Thursday, August 21, 2014

Climate Change and Global Warming Wikipedia pages






Climate change
From Wikipedia, the free encyclopedia
Jump to: navigation, search

For current and future climatological effects of human influences, see global warming. For the study of past climate change, see paleoclimatology. For temperatures on the longest time scales, see geologic temperature record.
Page semi-protected
Atmospheric sciences
ShipTracks MODIS 2005may11.jpg
Atmospheric physics
Atmospheric dynamics (category)
Atmospheric chemistry (category)
Meteorology

Weather (category) · (portal)
Tropical cyclone (category)
Climatology

Climate (category)
Climate change (category)
Global warming (category) · (portal)
v ·
 t ·
 e
   
Climate change is a significant time variation in weather patterns occurring over periods ranging from decades to millions of years. Climate change may refer to a change in average weather conditions, or in the time variation of weather around longer-term average conditions (i.e., more or fewer extreme weather events). Climate change is caused by factors such as biotic processes, variations in solar radiation received by Earth, plate tectonics, and volcanic eruptions. Certain human activities have also been identified as significant causes of recent climate change, often referred to as "global warming".[1]
Scientists actively work to understand past and future climate by using observations and theoretical models. A climate record — extending deep into the Earth's past — has been assembled, and continues to be built up, based on geological evidence from borehole temperature profiles, cores removed from deep accumulations of ice, floral and faunal records, glacial and periglacial processes, stable-isotope and other analyses of sediment layers, and records of past sea levels. More recent data are provided by the instrumental record. General circulation models, based on the physical sciences, are often used in theoretical approaches to match past climate data, make future projections, and link causes and effects in climate change.


Contents  [hide]
1 Terminology
2 Causes 2.1 Internal forcing mechanisms 2.1.1 Ocean variability
2.1.2 Life
2.2 External forcing mechanisms 2.2.1 Orbital variations
2.2.2 Solar output
2.2.3 Volcanism
2.2.4 Plate tectonics
2.2.5 Human influences

3 Physical evidence 3.1 Temperature measurements and proxies
3.2 Historical and archaeological evidence
3.3 Glaciers
3.4 Arctic sea ice loss
3.5 Vegetation
3.6 Pollen analysis
3.7 Precipitation
3.8 Dendroclimatology
3.9 Ice cores
3.10 Animals
3.11 Sea level change
4 See also
5 Notes
6 References
7 Further reading
8 External links

Terminology
The most general definition of climate change is a change in the statistical properties of the climate system when considered over long periods of time, regardless of cause.[2] Accordingly, fluctuations over periods shorter than a few decades, such as El Niño, do not represent climate change.
The term sometimes is used to refer specifically to climate change caused by human activity, as opposed to changes in climate that may have resulted as part of Earth's natural processes.[3] In this sense, especially in the context of environmental policy, the term climate change has become synonymous with anthropogenic global warming. Within scientific journals, global warming refers to surface temperature increases while climate change includes global warming and everything else that increasing greenhouse gas levels will affect.[4]
Causes
On the broadest scale, the rate at which energy is received from the sun and the rate at which it is lost to space determine the equilibrium temperature and climate of Earth. This energy is distributed around the globe by winds, ocean currents, and other mechanisms to affect the climates of different regions.
Factors that can shape climate are called climate forcings or "forcing mechanisms".[5] These include processes such as variations in solar radiation, variations in the Earth's orbit, mountain-building and continental drift and changes in greenhouse gas concentrations. There are a variety of climate change feedbacks that can either amplify or diminish the initial forcing. Some parts of the climate system, such as the oceans and ice caps, respond slowly in reaction to climate forcings, while others respond more quickly.
Forcing mechanisms can be either "internal" or "external". Internal forcing mechanisms are natural processes within the climate system itself (e.g., the thermohaline circulation). External forcing mechanisms can be either natural (e.g., changes in solar output) or anthropogenic (e.g., increased emissions of greenhouse gases).
Whether the initial forcing mechanism is internal or external, the response of the climate system might be fast (e.g., a sudden cooling due to airborne volcanic ash reflecting sunlight), slow (e.g. thermal expansion of warming ocean water), or a combination (e.g., sudden loss of albedo in the arctic ocean as sea ice melts, followed by more gradual thermal expansion of the water). Therefore, the climate system can respond abruptly, but the full response to forcing mechanisms might not be fully developed for centuries or even longer.
Internal forcing mechanisms
Scientists generally define the five components of earth's climate system to include atmosphere, hydrosphere, cryosphere, lithosphere (restricted to the surface soils, rocks, and sediments), and biosphere.[6] Natural changes in the climate system ("internal forcings") result in internal "climate variability".[7] Examples include the type and distribution of species, and changes in ocean currents.
Ocean variability
Main article: Thermohaline circulation



Pacific Decadal Oscillation 1925 to 2010
The ocean is a fundamental part of the climate system, some changes in it occurring at longer timescales than in the atmosphere, massing hundreds of times more and having very high thermal inertia (such as the ocean depths still lagging today in temperature adjustment from the Little Ice Age).[clarification needed][8]
Short-term fluctuations (years to a few decades) such as the El Niño-Southern Oscillation, the Pacific decadal oscillation, the North Atlantic oscillation, and the Arctic oscillation, represent climate variability rather than climate change. On longer time scales, alterations to ocean processes such as thermohaline circulation play a key role in redistributing heat by carrying out a very slow and extremely deep movement of water and the long-term redistribution of heat in the world's oceans.



 A schematic of modern thermohaline circulation. Tens of millions of years ago, continental plate movement formed a land-free gap around Antarctica, allowing formation of the ACC which keeps warm waters away from Antarctica.
Life
Life affects climate through its role in the carbon and water cycles and such mechanisms as albedo, evapotranspiration, cloud formation, and weathering.[9][10][11] Examples of how life may have affected past climate include: glaciation 2.3 billion years ago triggered by the evolution of oxygenic photosynthesis,[12][13] glaciation 300 million years ago ushered in by long-term burial of decomposition-resistant detritus of vascular land plants (forming coal),[14][15] termination of the Paleocene-Eocene Thermal Maximum 55 million years ago by flourishing marine phytoplankton,[16][17] reversal of global warming 49 million years ago by 800,000 years of arctic azolla blooms,[18][19] and global cooling over the past 40 million years driven by the expansion of grass-grazer ecosystems.[20][21]
External forcing mechanisms



 Increase in atmospheric CO
 2 levels




Milankovitch cycles from 800,000 years ago in the past to 800,000 years in the future.



Variations in CO2, temperature and dust from the Vostok ice core over the last 450,000 years
Orbital variations
Main article: Milankovitch cycles
Slight variations in Earth's orbit lead to changes in the seasonal distribution of sunlight reaching the Earth's surface and how it is distributed across the globe. There is very little change to the area-averaged annually averaged sunshine; but there can be strong changes in the geographical and seasonal distribution. The three types of orbital variations are variations in Earth's eccentricity, changes in the tilt angle of Earth's axis of rotation, and precession of Earth's axis. Combined together, these produce Milankovitch cycles which have a large impact on climate and are notable for their correlation to glacial and interglacial periods,[22] their correlation with the advance and retreat of the Sahara,[22] and for their appearance in the stratigraphic record.[23]
The IPCC notes that Milankovitch cycles drove the ice age cycles, CO2 followed temperature change "with a lag of some hundreds of years," and that as a feedback amplified temperature change.[24] The depths of the ocean have a lag time in changing temperature (thermal inertia on such scale). Upon seawater temperature change, the solubility of CO2 in the oceans changed, as well as other factors impacting air-sea CO2 exchange.[25]
Solar output
Main article: Solar variation



 Variations in solar activity during the last several centuries based on observations of sunspots and beryllium isotopes. The period of extraordinarily few sunspots in the late 17th century was the Maunder minimum.
The Sun is the predominant source of energy input to the Earth. Both long- and short-term variations in solar intensity are known to affect global climate.
Three to four billion years ago the sun emitted only 70% as much power as it does today. If the atmospheric composition had been the same as today, liquid water should not have existed on Earth. However, there is evidence for the presence of water on the early Earth, in the Hadean[26][27] and Archean[28][26] eons, leading to what is known as the faint young Sun paradox.[29] Hypothesized solutions to this paradox include a vastly different atmosphere, with much higher concentrations of greenhouse gases than currently exist.[30] Over the following approximately 4 billion years, the energy output of the sun increased and atmospheric composition changed. The Great Oxygenation Event – oxygenation of the atmosphere around 2.4 billion years ago – was the most notable alteration. Over the next five billion years the sun's ultimate death as it becomes a red giant and then a white dwarf will have large effects on climate, with the red giant phase possibly ending any life on Earth that survives until that time.
Solar output also varies on shorter time scales, including the 11-year solar cycle[31] and longer-term modulations.[32] Solar intensity variations are considered to have been influential in triggering the Little Ice Age,[33] and some of the warming observed from 1900 to 1950. The cyclical nature of the sun's energy output is not yet fully understood; it differs from the very slow change that is happening within the sun as it ages and evolves. Research indicates that solar variability has had effects including the Maunder minimum from 1645 to 1715 A.D., part of the Little Ice Age from 1550 to 1850 A.D. that was marked by relative cooling and greater glacier extent than the centuries before and afterward.[34][35] Some studies point toward solar radiation increases from cyclical sunspot activity affecting global warming, and climate may be influenced by the sum of all effects (solar variation, anthropogenic radiative forcings, etc.).[36][37]
Interestingly, a 2010 study[38] suggests, “that the effects of solar variability on temperature throughout the atmosphere may be contrary to current expectations.”
In an Aug 2011 Press Release,[39] CERN announced the publication in the Nature journal the initial results from its CLOUD experiment. The results indicate that ionisation from cosmic rays significantly enhances aerosol formation in the presence of sulfuric acid and water, but in the lower atmosphere where ammonia is also required, this is insufficient to account for aerosol formation and additional trace vapours must be involved. The next step is to find more about these trace vapours, including whether they are of natural or human origin.
Further information: Cosmic ray#Role in climate change
Volcanism



 In atmospheric temperature from 1979 to 2010, determined by MSU NASA satellites, effects appear from aerosols released by major volcanic eruptions (El Chichón and Pinatubo). El Niño is a separate event, from ocean variability.
The eruptions considered to be large enough to affect the Earth's climate on a scale of more than 1 year are the ones that inject over 0.1 Mt of SO2 into the stratosphere.[40] This is due to the optical properties of SO2 and sulfate aerosols, which strongly absorb or scatter solar radiation, creating a global layer of sulfuric acid haze.[41] On average, such eruptions occur several times per century, and cause cooling (by partially blocking the transmission of solar radiation to the Earth's surface) for a period of a few years.
The eruption of Mount Pinatubo in 1991, the second largest terrestrial eruption of the 20th century, affected the climate substantially, subsequently global temperatures decreased by about 0.5 °C (0.9 °F) for up to three years.[42][43] Thus, the cooling over large parts of the Earth reduced surface temperatures in 1991-93, the equivalent to a reduction in net radiation of 4 watts per square meter.[44] The Mount Tambora eruption in 1815 caused the Year Without a Summer.[45] Much larger eruptions, known as large igneous provinces, occur only a few times every fifty - hundred million years - through flood basalt, and caused in Earth past global warming and mass extinctions.[46]
Small eruptions, with injections of less than 0.1 Mt of sulfur dioxide into the stratosphere, impact the atmosphere only subtly, as temperature changes are comparable with natural variability. However, because smaller eruptions occur at a much higher frequency, they too have a significant impact on Earth's atmosphere.[40][47]
Seismic monitoring maps current and future trends in volcanic activities, and tries to develop early warning systems. In climate modelling the aim is to study the physical mechanisms and feedbacks of volcanic forcing.[48]
Volcanoes are also part of the extended carbon cycle. Over very long (geological) time periods, they release carbon dioxide from the Earth's crust and mantle, counteracting the uptake by sedimentary rocks and other geological carbon dioxide sinks. The US Geological Survey estimates are that volcanic emissions are at a much lower level than the effects of current human activities, which generate 100–300 times the amount of carbon dioxide emitted by volcanoes.[49] A review of published studies indicates that annual volcanic emissions of carbon dioxide, including amounts released from mid-ocean ridges, volcanic arcs, and hot spot volcanoes, are only the equivalent of 3 to 5 days of human caused output. The annual amount put out by human activities may be greater than the amount released by supererruptions, the most recent of which was the Toba eruption in Indonesia 74,000 years ago.[50]
Although volcanoes are technically part of the lithosphere, which itself is part of the climate system, the IPCC explicitly defines volcanism as an external forcing agent.[51]
Plate tectonics
Main article: Plate tectonics
Over the course of millions of years, the motion of tectonic plates reconfigures global land and ocean areas and generates topography. This can affect both global and local patterns of climate and atmosphere-ocean circulation.[52]
The position of the continents determines the geometry of the oceans and therefore influences patterns of ocean circulation. The locations of the seas are important in controlling the transfer of heat and moisture across the globe, and therefore, in determining global climate. A recent example of tectonic control on ocean circulation is the formation of the Isthmus of Panama about 5 million years ago, which shut off direct mixing between the Atlantic and Pacific Oceans. This strongly affected the ocean dynamics of what is now the Gulf Stream and may have led to Northern Hemisphere ice cover.[53][54] During the Carboniferous period, about 300 to 360 million years ago, plate tectonics may have triggered large-scale storage of carbon and increased glaciation.[55] Geologic evidence points to a "megamonsoonal" circulation pattern during the time of the supercontinent Pangaea, and climate modeling suggests that the existence of the supercontinent was conducive to the establishment of monsoons.[56]
The size of continents is also important. Because of the stabilizing effect of the oceans on temperature, yearly temperature variations are generally lower in coastal areas than they are inland. A larger supercontinent will therefore have more area in which climate is strongly seasonal than will several smaller continents or islands.
Human influences
Main article: Global warming
In the context of climate variation, anthropogenic factors are human activities which affect the climate. The scientific consensus on climate change is "that climate is changing and that these changes are in large part caused by human activities,"[57] and it "is largely irreversible."[58]

“Science has made enormous inroads in understanding climate change and its causes, and is beginning to help develop a strong understanding of current and potential impacts that will affect people today and in coming decades. This understanding is crucial because it allows decision makers to place climate change in the context of other large challenges facing the nation and the world. There are still some uncertainties, and there always will be in understanding a complex system like Earth’s climate. Nevertheless, there is a strong, credible body of evidence, based on multiple lines of research, documenting that climate is changing and that these changes are in large part caused by human activities. While much remains to be learned, the core phenomenon, scientific questions, and hypotheses have been examined thoroughly and have stood firm in the face of serious scientific debate and careful evaluation of alternative explanations.”
— United States National Research Council, Advancing the Science of Climate Change
Of most concern in these anthropogenic factors is the increase in CO2 levels due to emissions from fossil fuel combustion, followed by aerosols (particulate matter in the atmosphere) and the CO2 released by cement manufacture. Other factors, including land use, ozone depletion, animal agriculture[59] and deforestation, are also of concern in the roles they play – both separately and in conjunction with other factors – in affecting climate, microclimate, and measures of climate variables.
Physical evidence



 Comparisons between Asian Monsoons from 200 A.D. to 2000 A.D. (staying in the background on other plots), Northern Hemisphere temperature, Alpine glacier extent (vertically inverted as marked), and human history as noted by the U.S. NSF.


 Arctic temperature anomalies over a 100 year period as estimated by NASA. Typical high monthly variance can be seen, while longer-term averages highlight trends.
Evidence for climatic change is taken from a variety of sources that can be used to reconstruct past climates. Reasonably complete global records of surface temperature are available beginning from the mid-late 19th century. For earlier periods, most of the evidence is indirect—climatic changes are inferred from changes in proxies, indicators that reflect climate, such as vegetation, ice cores,[60] dendrochronology, sea level change, and glacial geology.
Temperature measurements and proxies
The instrumental temperature record from surface stations was supplemented by radiosonde balloons, extensive atmospheric monitoring by the mid-20th century, and, from the 1970s on, with global satellite data as well. The 18O/16O ratio in calcite and ice core samples used to deduce ocean temperature in the distant past is an example of a temperature proxy method, as are other climate metrics noted in subsequent categories.
Historical and archaeological evidence
Main article: Historical impacts of climate change
Climate change in the recent past may be detected by corresponding changes in settlement and agricultural patterns.[61] Archaeological evidence, oral history and historical documents can offer insights into past changes in the climate. Climate change effects have been linked to the collapse of various civilizations.[61]



 Decline in thickness of glaciers worldwide over the past half-century
Glaciers
Glaciers are considered among the most sensitive indicators of climate change.[62] Their size is determined by a mass balance between snow input and melt output. As temperatures warm, glaciers retreat unless snow precipitation increases to make up for the additional melt; the converse is also true.
Glaciers grow and shrink due both to natural variability and external forcings. Variability in temperature, precipitation, and englacial and subglacial hydrology can strongly determine the evolution of a glacier in a particular season. Therefore, one must average over a decadal or longer time-scale and/or over a many individual glaciers to smooth out the local short-term variability and obtain a glacier history that is related to climate.
A world glacier inventory has been compiled since the 1970s, initially based mainly on aerial photographs and maps but now relying more on satellites. This compilation tracks more than 100,000 glaciers covering a total area of approximately 240,000 km2, and preliminary estimates indicate that the remaining ice cover is around 445,000 km2. The World Glacier Monitoring Service collects data annually on glacier retreat and glacier mass balance. From this data, glaciers worldwide have been found to be shrinking significantly, with strong glacier retreats in the 1940s, stable or growing conditions during the 1920s and 1970s, and again retreating from the mid-1980s to present.[63]
The most significant climate processes since the middle to late Pliocene (approximately 3 million years ago) are the glacial and interglacial cycles. The present interglacial period (the Holocene) has lasted about 11,700 years.[64] Shaped by orbital variations, responses such as the rise and fall of continental ice sheets and significant sea-level changes helped create the climate. Other changes, including Heinrich events, Dansgaard–Oeschger events and the Younger Dryas, however, illustrate how glacial variations may also influence climate without the orbital forcing.
Glaciers leave behind moraines that contain a wealth of material—including organic matter, quartz, and potassium that may be dated—recording the periods in which a glacier advanced and retreated. Similarly, by tephrochronological techniques, the lack of glacier cover can be identified by the presence of soil or volcanic tephra horizons whose date of deposit may also be ascertained.



 This time series, based on satellite data, shows the annual Arctic sea ice minimum since 1979. The September 2010 extent was the third lowest in the satellite record.
Arctic sea ice loss
Main articles: Arctic sea ice decline and Climate change in the Arctic
The decline in Arctic sea ice, both in extent and thickness, over the last several decades is further evidence for rapid climate change.[65] Sea ice is frozen seawater that floats on the ocean surface. It covers millions of square miles in the polar regions, varying with the seasons. In the Arctic, some sea ice remains year after year, whereas almost all Southern Ocean or Antarctic sea ice melts away and reforms annually. Satellite observations show that Arctic sea ice is now declining at a rate of 11.5 percent per decade, relative to the 1979 to 2000 average.[66]


File:Plant Productivity in a Warming World.ogv
Play media


 This video summarizes how climate change, associated with increased carbon dioxide levels, has affected plant growth.
Vegetation
A change in the type, distribution and coverage of vegetation may occur given a change in the climate. Some changes in climate may result in increased precipitation and warmth, resulting in improved plant growth and the subsequent sequestration of airborne CO2. A gradual increase in warmth in a region will lead to earlier flowering and fruiting times, driving a change in the timing of life cycles of dependent organisms. Conversely, cold will cause plant bio-cycles to lag.[67] Larger, faster or more radical changes, however, may result in vegetation stress, rapid plant loss and desertification in certain circumstances.[68][69] An example of this occurred during the Carboniferous Rainforest Collapse (CRC), an extinction event 300 million years ago. At this time vast rainforests covered the equatorial region of Europe and America. Climate change devastated these tropical rainforests, abruptly fragmenting the habitat into isolated 'islands' and causing the extinction of many plant and animal species.[68]
Satellite data available in recent decades indicates that global terrestrial net primary production increased by 6% from 1982 to 1999, with the largest portion of that increase in tropical ecosystems, then decreased by 1% from 2000 to 2009.[70][71]
Pollen analysis
Palynology is the study of contemporary and fossil palynomorphs, including pollen. Palynology is used to infer the geographical distribution of plant species, which vary under different climate conditions. Different groups of plants have pollen with distinctive shapes and surface textures, and since the outer surface of pollen is composed of a very resilient material, they resist decay. Changes in the type of pollen found in different layers of sediment in lakes, bogs, or river deltas indicate changes in plant communities. These changes are often a sign of a changing climate.[72][73] As an example, palynological studies have been used to track changing vegetation patterns throughout the Quaternary glaciations[74] and especially since the last glacial maximum.[75]



Top: Arid ice age climate
Middle: Atlantic Period, warm and wet
Bottom: Potential vegetation in climate now if not for human effects like agriculture.[76]
Precipitation
Past precipitation can be estimated in the modern era with the global network of precipitation gauges. Surface coverage over oceans and remote areas is relatively sparse, but, reducing reliance on interpolation, satellite data has been available since the 1970s.[77] Quantification of climatological variation of precipitation in prior centuries and epochs is less complete but approximated using proxies such as marine sediments, ice cores, cave stalagmites, and tree rings.[78]
Climatological temperatures substantially affect precipitation. For instance, during the Last Glacial Maximum of 18,000 years ago, thermal-driven evaporation from the oceans onto continental landmasses was low, causing large areas of extreme desert, including polar deserts (cold but with low rates of precipitation).[76] In contrast, the world's climate was wetter than today near the start of the warm Atlantic Period of 8000 years ago.[76]
Estimated global land precipitation increased by approximately 2% over the course of the 20th century, though the calculated trend varies if different time endpoints are chosen, complicated by ENSO and other oscillations, including greater global land precipitation in the 1950s and 1970s than the later 1980s and 1990s despite the positive trend over the century overall.[77][79][80] Similar slight overall increase in global river runoff and in average soil moisture has been perceived.[79]
Dendroclimatology
Dendroclimatology is the analysis of tree ring growth patterns to determine past climate variations.[81] Wide and thick rings indicate a fertile, well-watered growing period, whilst thin, narrow rings indicate a time of lower rainfall and less-than-ideal growing conditions.
Ice cores
Analysis of ice in a core drilled from an ice sheet such as the Antarctic ice sheet, can be used to show a link between temperature and global sea level variations. The air trapped in bubbles in the ice can also reveal the CO2 variations of the atmosphere from the distant past, well before modern environmental influences. The study of these ice cores has been a significant indicator of the changes in CO2 over many millennia, and continues to provide valuable information about the differences between ancient and modern atmospheric conditions.
Animals
Remains of beetles are common in freshwater and land sediments. Different species of beetles tend to be found under different climatic conditions. Given the extensive lineage of beetles whose genetic makeup has not altered significantly over the millennia, knowledge of the present climatic range of the different species, and the age of the sediments in which remains are found, past climatic conditions may be inferred.[82]
Similarly, the historical abundance of various fish species has been found to have a substantial relationship with observed climatic conditions.[83] Changes in the primary productivity of autotrophs in the oceans can affect marine food webs.[84]
Sea level change
Main articles: Sea level and Current sea level rise
Global sea level change for much of the last century has generally been estimated using tide gauge measurements collated over long periods of time to give a long-term average. More recently, altimeter measurements — in combination with accurately determined satellite orbits — have provided an improved measurement of global sea level change.[85] To measure sea levels prior to instrumental measurements, scientists have dated coral reefs that grow near the surface of the ocean, coastal sediments, marine terraces, ooids in limestones, and nearshore archaeological remains. The predominant dating methods used are uranium series and radiocarbon, with cosmogenic radionuclides being sometimes used to date terraces that have experienced relative sea level fall. In the early Pliocene, global temperatures were 1–2˚C warmer than the present temperature, yet sea level was 15–25 meters higher than today.[86]

See also
4 Degrees and Beyond International Climate Conference
Abrupt climate change and links therein
Attribution of recent climate change
Blue carbon
Climate change and agriculture
Climate change denial
Climate change mitigation
Climate change in literature
Geologic time scale
History of climate change science
Temperature record
Solar variation
Homogenization
Sustainable Development
Climate of recent glaciations
Bond event

Portal icon Environment portal
Portal icon Global warming portal
Portal icon Energy portal
Climate of the past
Snowball Earth
Ice ages
Paleocene–Eocene Thermal Maximum
Permo-Carboniferous Glaciation
Recent climate
Anthropocene
Extreme weather
Effects of global warming on oceans
Hardiness zone
Holocene climatic optimum
Medieval Warm Period
Temperature record of the past 1000 years
CORA dataset temperature and salinity of global oceans

Notes
1.Jump up ^ America's Climate Choices: Panel on Advancing the Science of Climate Change; National Research Council (2010). Advancing the Science of Climate Change. Washington, D.C.: The National Academies Press. ISBN 0-309-14588-0. "(p1) ... there is a strong, credible body of evidence, based on multiple lines of research, documenting that climate is changing and that these changes are in large part caused by human activities. While much remains to be learned, the core phenomenon, scientific questions, and hypotheses have been examined thoroughly and have stood firm in the face of serious scientific debate and careful evaluation of alternative explanations. * * * (pp. 21–22) Some scientific conclusions or theories have been so thoroughly examined and tested, and supported by so many independent observations and results, that their likelihood of subsequently being found to be wrong is vanishingly small. Such conclusions and theories are then regarded as settled facts. This is the case for the conclusions that the Earth system is warming and that much of this warming is very likely due to human activities."
2.Jump up ^ "Glossary – Climate Change". Education Center – Arctic Climatology and Meteorology. NSIDC National Snow and Ice Data Center.; Glossary, in IPCC TAR WG1 2001.
3.Jump up ^ "The United Nations Framework Convention on Climate Change". 21 March 1994. "Climate change means a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods."
4.Jump up ^ "What's in a Name? Global Warming vs. Climate Change". NASA. Retrieved 23 July 2011.
5.Jump up ^ US EPA. Glossary of climate change terms.
6.Jump up ^ "Glossary". NASA Earth Observatory. 2011. Retrieved 8 July 2011. "Climate System: The five physical components (atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere) that are responsible for the climate and its variations."
7.Jump up ^ IPCC (2007). "What are Climate Change and Climate Variability?". IPCC.
8.Jump up ^ Kirk Bryan, Geophysical Fluid Dynamics Laboratory. Man's Great Geophysical Experiment. U.S. National Oceanic and Atmospheric Administration.
9.Jump up ^ Spracklen, D. V; Bonn, B.; Carslaw, K. S (2008). "Boreal forests, aerosols and the impacts on clouds and climate". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366 (1885): 4613. doi:10.1098/rsta.2008.0201.
10.Jump up ^ Christner, B. C.; Morris, C. E.; Foreman, C. M.; Cai, R.; Sands, D. C. (2008). "Ubiquity of Biological Ice Nucleators in Snowfall". Science 319 (5867): 1214. doi:10.1126/science.1149757. PMID 18309078.
11.Jump up ^ Schwartzman, David W.; Volk, Tyler (1989). "Biotic enhancement of weathering and the habitability of Earth". Nature 340 (6233): 457. doi:10.1038/340457a0.
12.Jump up ^ Kopp, R. E.; Kirschvink, J. L.; Hilburn, I. A.; Nash, C. Z. (2005). "The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis". Proceedings of the National Academy of Sciences 102 (32): 11131–6. doi:10.1073/pnas.0504878102. PMC 1183582. PMID 16061801.
13.Jump up ^ Kasting, J. F.; Siefert, JL (2002). "Life and the Evolution of Earth's Atmosphere". Science 296 (5570): 1066–8. doi:10.1126/science.1071184. PMID 12004117.
14.Jump up ^ Mora, C. I.; Driese, S. G.; Colarusso, L. A. (1996). "Middle to Late Paleozoic Atmospheric CO2 Levels from Soil Carbonate and Organic Matter". Science 271 (5252): 1105. doi:10.1126/science.271.5252.1105.
15.Jump up ^ Berner, R. A. (1999). "Atmospheric oxygen over Phanerozoic time". Proceedings of the National Academy of Sciences 96 (20): 10955–7. doi:10.1073/pnas.96.20.10955. PMC 34224. PMID 10500106.
16.Jump up ^ Bains, Santo; Norris, Richard D.; Corfield, Richard M.; Faul, Kristina L. (2000). "Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback". Nature 407 (6801): 171–4. doi:10.1038/35025035. PMID 11001051.
17.Jump up ^ Zachos, J. C.; Dickens, G. R. (2000). "An assessment of the biogeochemical feedback response to the climatic and chemical perturbations of the LPTM". GFF 122: 188. doi:10.1080/11035890001221188.
18.Jump up ^ Speelman, E. N.; Van Kempen, M. M. L.; Barke, J.; Brinkhuis, H.; Reichart, G. J.; Smolders, A. J. P.; Roelofs, J. G. M.; Sangiorgi, F.; De Leeuw, J. W.; Lotter, A. F.; Sinninghe Damsté, J. S. (2009). "The Eocene ArcticAzollabloom: Environmental conditions, productivity and carbon drawdown". Geobiology 7 (2): 155–70. doi:10.1111/j.1472-4669.2009.00195.x. PMID 19323694.
19.Jump up ^ Brinkhuis, Henk; Schouten, Stefan; Collinson, Margaret E.; Sluijs, Appy; Sinninghe Damsté, Jaap S. Sinninghe; Dickens, Gerald R.; Huber, Matthew; Cronin, Thomas M.; Onodera, Jonaotaro; Takahashi, Kozo; Bujak, Jonathan P.; Stein, Ruediger; Van Der Burgh, Johan; Eldrett, James S.; Harding, Ian C.; Lotter, André F.; Sangiorgi, Francesca; Van Konijnenburg-Van Cittert, Han van Konijnenburg-van; De Leeuw, Jan W.; Matthiessen, Jens; Backman, Jan; Moran, Kathryn; Expedition 302, Scientists (2006). "Episodic fresh surface waters in the Eocene Arctic Ocean". Nature 441 (7093): 606–9. doi:10.1038/nature04692. PMID 16752440.
20.Jump up ^ Retallack, Gregory J. (2001). "Cenozoic Expansion of Grasslands and Climatic Cooling". The Journal of Geology 109 (4): 407. Bibcode:2001JG....109..407R. doi:10.1086/320791.
21.Jump up ^ Dutton, Jan F.; Barron, Eric J. (1997). "Miocene to present vegetation changes: A possible piece of the Cenozoic cooling puzzle". Geology 25: 39. doi:10.1130/0091-7613(1997)025<0039:MTPVCA>2.3.CO;2.
22.^ Jump up to: a b "Milankovitch Cycles and Glaciation". University of Montana. Archived from the original on 2011-07-16. Retrieved 2 April 2009.
23.Jump up ^ Gale, Andrew S. (1989). "A Milankovitch scale for Cenomanian time". Terra Nova 1 (5): 420. doi:10.1111/j.1365-3121.1989.tb00403.x.
24.Jump up ^ FAQ 6.1: What Caused the Ice Ages and Other Important Climate Changes Before the Industrial Era? in IPCC AR4 WG1 2007.
25.Jump up ^ Box 6.2: What Caused the Low Atmospheric Carbon Dioxide Concentrations During Glacial Times? in IPCC AR4 WG1 2007 .
26.^ Jump up to: a b Marty, B. (2006). "Water in the Early Earth". Reviews in Mineralogy and Geochemistry 62: 421. doi:10.2138/rmg.2006.62.18.
27.Jump up ^ Watson, E. B.; Harrison, TM (2005). "Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth". Science 308 (5723): 841–4. doi:10.1126/science.1110873. PMID 15879213.
28.Jump up ^ Hagemann, Steffen G.; Gebre-Mariam, Musie; Groves, David I. (1994). "Surface-water influx in shallow-level Archean lode-gold deposits in Western, Australia". Geology 22 (12): 1067. doi:10.1130/0091-7613(1994)022<1067:SWIISL>2.3.CO;2.
29.Jump up ^ Sagan, C.; G. Mullen (1972). Earth and Mars: Evolution of Atmospheres and Surface Temperatures.
30.Jump up ^ Sagan, C.; Chyba, C (1997). "The Early Faint Sun Paradox: Organic Shielding of Ultraviolet-Labile Greenhouse Gases". Science 276 (5316): 1217–21. doi:10.1126/science.276.5316.1217. PMID 11536805.
31.Jump up ^ Willson, Richard C.; Hudson, Hugh S. (1991). "The Sun's luminosity over a complete solar cycle". Nature 351 (6321): 42. doi:10.1038/351042a0.
32.Jump up ^ Willson, Richard C. (2003). "Secular total solar irradiance trend during solar cycles 21–23". Geophysical Research Letters 30 (5). Bibcode:2003GeoRL..30.1199W. doi:10.1029/2002GL016038.
33.Jump up ^ "Solar Irradiance Changes and the Relatively Recent Climate". Solar influences on global change. Washington, D.C: National Academy Press. 1994. p. 36. ISBN 0-309-05148-7.
34.Jump up ^ "Glossary I-M". NASA Earth Observatory. Retrieved 28 February 2011.
35.Jump up ^ Bard, Edouard; Raisbeck, Grant; Yiou, Françoise; Jouzel, Jean (2000). "Solar irradiance during the last 1200 years based on cosmogenic nuclides". Tellus B 52 (3): 985. doi:10.1034/j.1600-0889.2000.d01-7.x.
36.Jump up ^ "NASA Study Finds Increasing Solar Trend That Can Change Climate". 2003.
37.Jump up ^ Svensmark, Henrik; Bondo, Torsten; Svensmark, Jacob (2009). "Cosmic ray decreases affect atmospheric aerosols and clouds". Geophysical Research Letters 36 (15): n/a. Bibcode:2009GeoRL..3615101S. doi:10.1029/2009GL038429.
38.Jump up ^ Haigh, Joanna D.; Ann R. Winning, Ralf Toumi, Jerald W. Harder (2010-10-07). "An influence of solar spectral variations on radiative forcing of climate". Nature 467 (7316): 696–9. Bibcode:2010Natur.467..696H. doi:10.1038/nature09426. ISSN 0028-0836. PMID 20930841. "Currently there is insufficient observational evidence to validate the spectral variations observed by SIM, or to fully characterize other solar cycles, but our findings raise the possibility that the effects of solar variability on temperature throughout the atmosphere may be contrary to current expectations."
39.Jump up ^ Jasper Kirkby, et al. (2011). "Role of sulphuric acid,ammonia and galactic cosmic rays in atmospheric aerosol nucleation". Nature. doi:10.1038/news.2011.504.[dead link]
40.^ Jump up to: a b Miles, M. G.; Grainger, R. G.; Highwood, E. J. (2004). "The significance of volcanic eruption strength and frequency for climate" (pdf). Quarterly Journal of the Royal Meteorological Society 130 (602): 2361–2376. doi:10.1256/qj.30.60.
41.Jump up ^ "Volcanic Gases and Climate Change Overview". http://www.usgs.gov/. USGS. Retrieved 31 July 2014.
42.Jump up ^ Diggles, Michael (28 February 2005). "The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines". U.S. Geological Survey Fact Sheet 113-97. United States Geological Survey. Retrieved 8 October 2009.
43.Jump up ^ Diggles, Michael. "The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines". http://www.usgs.gov/. Retrieved 31 July 2014.
44.Jump up ^ Newhall, Chris. "The Atmospheric Impact of the 1991 Mount Pinatubo Eruption". http://www.usgs.gov/. USGS. Retrieved 31 July 2014.
45.Jump up ^ Oppenheimer, Clive (2003). "Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815". Progress in Physical Geography 27 (2): 230. doi:10.1191/0309133303pp379ra.
46.Jump up ^ Wignall, P (2001). "Large igneous provinces and mass extinctions". Earth-Science Reviews 53: 1. Bibcode:2001ESRv...53....1W. doi:10.1016/S0012-8252(00)00037-4.
47.Jump up ^ Graf, H.-F.; Feichter, J.; Langmann, B. (1997). "Volcanic sulphur emissions: Estiamtes of source strength and its contribution to the global sulphate distribution" (pdf). Journal of Geophysical Research: Atmospheres 102: 10727–10738. doi:10.1029/96JD03265.
48.Jump up ^ "IPCC Fourth Assessment Report: Climate Change 2007". http://www.ipcc.ch/index.htm. Retrieved 31 July 2014.
49.Jump up ^ "Volcanic Gases and Their Effects". U.S. Department of the Interior. 2006-01-10. Retrieved 21 January 2008.
50.Jump up ^ "Human Activities Emit Way More Carbon Dioxide Than Do Volcanoes". American Geophysical Union. 14 June 2011. Retrieved 20 June 2011.
51.Jump up ^ Annexes,[page needed] in IPCC AR4 SYR 2007.
52.Jump up ^ Forest, C. E.; Wolfe, J. A.; Molnar, P. .; Emanuel, K. A. (1999). "Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate". Geological Society of America Bulletin 111 (4): 497–511. doi:10.1130/0016-7606(1999)111<0497:PIAPAB>2.3.CO;2. edit
53.Jump up ^ "Panama: Isthmus that Changed the World". NASA Earth Observatory. Retrieved 1 July 2008.
54.Jump up ^ Keigwin, Gerald H. (2004-03-22). "How the Isthmus of Panama Put Ice in the Arctic". Oceanus (Woods Hole Oceanographic Institution) 42 (2). Retrieved 1 October 2013.
55.Jump up ^ Bruckschen, Peter; Oesmanna, Susanne; Veizer, Ján (1999-09-30). Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics 161 (1–3). p. 127. doi:10.1016/S0009-2541(99)00084-4.
56.Jump up ^ Parrish, Judith T. (1993). "Climate of the Supercontinent Pangea". Chemical Geology (The University of Chicago Press) 101 (2): 215–233. Bibcode:1993JG....101..215P. doi:10.1086/648217 (inactive 2009-09-18). JSTOR 30081148.
57.Jump up ^ America's Climate Choices: Panel on Advancing the Science of Climate Change; National Research Council (2010). Advancing the Science of Climate Change. Washington, D.C.: The National Academies Press. ISBN 0-309-14588-0.
58.Jump up ^ Susan Solomon, Gian-Kasper Plattner, Reto Knutti, and Pierre Friedlingstein (2009). "Irreversible climate change due to carbon dioxide emissions". Proceedings of the National Academy of Sciences of the United States of America (Proceedings of the National Academy of Sciences of the United States of America) 106 (6): 1704–9. Bibcode:2009PNAS..106.1704S. doi:10.1073/pnas.0812721106. PMC 2632717. PMID 19179281.
59.Jump up ^ Steinfeld, H.; P. Gerber; T. Wassenaar; V. Castel; M. Rosales; C. de Haan (2006). Livestock's long shadow.
60.Jump up ^ Petit, J. R.; Jouzel, J.; Raynaud, D.; Barkov, N. I.; Barnola, J.-M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; Delmotte, M.; Kotlyakov, V. M.; Legrand, M.; Lipenkov, V. Y.; Lorius, C.; Ritz, C.; Saltzman, E. (1999-06-03). "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica". Nature 399 (1): 429–436. doi:10.1038/20859.
61.^ Jump up to: a b Demenocal, P. B. (2001). "Cultural Responses to Climate Change During the Late Holocene". Science 292 (5517): 667–673. Bibcode:2001Sci...292..667D. doi:10.1126/science.1059827. PMID 11303088. edit
62.Jump up ^ Seiz, G.; N. Foppa (2007). The activities of the World Glacier Monitoring Service (WGMS) (Report). Retrieved 21 June 2009.[dead link]
63.Jump up ^ Zemp, M.; I.Roer, A.Kääb, M.Hoelzle, F.Paul, W. Haeberli (2008) (PDF). United Nations Environment Programme – Global Glacier Changes: facts and figures (Report). Retrieved 21 June 2009.
64.Jump up ^ "International Stratigraphic Chart". International Commission on Stratigraphy. 2008. Retrieved 3 October 2011.
65.Jump up ^ NASA Global Climate Change "Climate Change: How do we know?",
66.Jump up ^ "National Snow and Ice Data Center "State of the Cryosphere"". Nsidc.org. Retrieved 10 September 2011.
67.Jump up ^ Kinver, Mark (2011-11-15). "UK trees' fruit ripening '18 days earlier'". Bbc.co.uk. Retrieved 1 November 2012.
68.^ Jump up to: a b Sahney, S., Benton, M.J. & Falcon-Lang, H.J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica" (PDF). Geology 38 (12): 1079–1082. doi:10.1130/G31182.1. Retrieved 27 November 2013.
69.Jump up ^ Bachelet, D; R.Neilson,J.M.Lenihan,R.J.Drapek (2001). "Climate Change Effects on Vegetation Distribution and Carbon Budget in the United States". Ecosystems 4 (3): 164–185. doi:10.1007/s10021-001-0002-7.
70.Jump up ^ Nemani, Ramakrishna; C.D. Keeling, H. Hashimoto, W.M. Jolly, S.C. Piper, C.J. Tucker, R.B. Myneni, and S.W. Running. (2003). "Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999". Science 300 (5625): 1560–3. Bibcode:2003Sci...300.1560N. doi:10.1126/science.1082750. PMID 12791990.
71.Jump up ^ Zhao, Maosheng; S.W. Running. (2010). "Drought-induced reduction in global terrestrial net primary production from 2000 through 2009". Science 329 (5994): 940–3. Bibcode:2010Sci...329..940Z. doi:10.1126/science.1192666. PMID 20724633.
72.Jump up ^ Langdon, PG; Barber KE; , Lomas-Clarke SH; Lomas-Clarke (Previously Morriss), S.H. (August 2004). "Reconstructing climate and environmental change in northern England through chironomid and pollen analyses: evidence from Talkin Tarn, Cumbria". Journal of Paleolimnology 32 (2): 197–213. doi:10.1023/B:JOPL.0000029433.85764.a5.
73.Jump up ^ Birks, HH (March 2003). "The importance of plant macrofossils in the reconstruction of Lateglacial vegetation and climate: examples from Scotland, western Norway, and Minnesota, USA". Quaternary Science Reviews 22 (5–7): 453–473. Bibcode:2003QSRv...22..453B. doi:10.1016/S0277-3791(02)00248-2.
74.Jump up ^ Miyoshi, N; Fujiki, Toshiyuki; Morita, Yoshimune (1999). "Palynology of a 250-m core from Lake Biwa: a 430,000-year record of glacial–interglacial vegetation change in Japan". Review of Palaeobotany and Palynology 104 (3–4): 267. doi:10.1016/S0034-6667(98)00058-X.
75.Jump up ^ Prentice, I. Colin; Bartlein, Patrick J; Webb, Thompson (1991). "Vegetation and Climate Change in Eastern North America Since the Last Glacial Maximum". Ecology 72 (6): 2038–2056. doi:10.2307/1941558. JSTOR 1941558.
76.^ Jump up to: a b c Adams J.M. & Faure H. (1997) (eds.), QEN members. Review and Atlas of Palaeovegetation: Preliminary land ecosystem maps of the world since the Last Glacial Maximum. Oak Ridge National Laboratory, TN, USA.
77.^ Jump up to: a b New, M., Todd, M., Hulme, M. and Jones, P. (December 2001). "Review: Precipitation measurements and trends in the twentieth century". International Journal of Climatology 21 (15): 1889–1922. Bibcode:2001IJCli..21.1889N. doi:10.1002/joc.680.
78.Jump up ^ Dominic, F., Burns, S.J., Neff, U., Mudulsee, M., Mangina, A. and Matter, A. (April 2004). "Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman". Quaternary Science Reviews 23 (7–8): 935–945. Bibcode:2004QSRv...23..935F. doi:10.1016/j.quascirev.2003.06.019.
79.^ Jump up to: a b Huntington, T.G. (U.S. Geological Survey) (March 2006). "Evidence for intensification of the global water cycle: Review and synthesis". Journal of Hydrology 319 (1–4): 83–95. Bibcode:2006JHyd..319...83H. doi:10.1016/j.jhydrol.2005.07.003.
80.Jump up ^ Smith, T. M.; Yin, X.; Gruber, A. (2006). "Variations in annual global precipitation (1979–2004), based on the Global Precipitation Climatology Project 2.5° analysis". Geophysical Research Letters 33 (6). Bibcode:2006GeoRL..3306705S. doi:10.1029/2005GL025393.
81.Jump up ^ Dendroclimatology : progress and prospect. New York: Springer. 2010. ISBN 978-1-4020-4010-8.
82.Jump up ^ Coope, G.R.; Lemdahl, G.; Lowe, J.J.; Walkling, A. (1999-05-04). "Temperature gradients in northern Europe during the last glacial—Holocene transition(14–9 14 C kyr BP) interpreted from coleopteran assemblages". Journal of Quaternary Science 13 (5): 419–433. Bibcode:1998JQS....13..419C. doi:10.1002/(SICI)1099-1417(1998090)13:5<419::AID-JQS410>3.0.CO;2-D.
83.Jump up ^ FAO Fisheries Technical Paper. No. 410. Rome, FAO. 2001. Climate Change and Long-Term Fluctuations of Commercial Catches. United Nations Food and Agriculture Organization.
84.Jump up ^ Brown, C. J., Fulton, E. A., Hobday, A. J., Matear, R. J., Possingham, H. P., Bulman, C., Christensen, V., Forrest, R. E., Gehrke, P. C., Gribble, N. A., Griffiths, S. P., Lozano-Montes, H., Martin, J. M., Metcalf, S., Okey, T. A., Watson, R. and Richardson, A. J. (April 2010). "Effects of climate-driven primary production change on marine food webs: Implications for fisheries and conservation". Global Change Biology 16 (4): 1194–1212. doi:10.1111/j.1365-2486.2009.02046.x.
85.Jump up ^ "Sea Level Change". University of Colorado at Boulder. Retrieved 21 July 2009.
86.Jump up ^ Hansen, James. "Science Briefs: Earth's Climate History". NASA GISS. Retrieved 25 April 2013.
References
IPCC AR4 WG1 (2007). Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; and Miller, H.L., ed. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 978-0-521-88009-1 (pb: 978-0-521-70596-7).
IPCC AR4 SYR (2007). Core Writing Team; Pachauri, R.K; and Reisinger, A., ed. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. ISBN 92-9169-122-4.
IPCC TAR WG1 (2001). Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; and Johnson, C.A., ed. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 0-521-80767-0 (pb: 0-521-01495-6).
Further reading
IPCC AR4 WG1 (2007). "Summary for Policymakers". In Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; and Miller, H.L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 978-0-521-88009-1. (pb: 978-0-521-70596-7).
IPCC AR4 SYR (2007). "Summary for Policymakers". In Core Writing Team; Pachauri, R.K; and Reisinger, A. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. ISBN 92-9169-122-4..
Emanuel K (August 2005). "Increasing destructiveness of tropical cyclones over the past 30 years" (PDF). Nature 436 (7051): 686–8. Bibcode:2005Natur.436..686E. doi:10.1038/nature03906. PMID 16056221.
Edwards, Paul Geoffrey; Miller, Clark A. (2001). Changing the atmosphere: expert knowledge and environmental governance. Cambridge, Mass: MIT Press. ISBN 0-262-63219-5.
McKibben, Bill (2011). The Global Warming Reader. New York, N.Y.: OR Books. ISBN 978-1-935928-36-2.
Ruddiman, W. F. (2003). "The anthropogenic greenhouse era began thousands of years ago". Climate Change 61 (3): 261–293. doi:10.1023/B:CLIM.0000004577.17928.fa.
William F. Ruddiman (2005). Plows, plagues, and petroleum: how humans took control of climate. Princeton, N.J: Princeton University Press. ISBN 0-691-13398-0.
Ruddiman, W. F., Vavrus, S. J. and Kutzbach, J. E. (2005). "A test of the overdue-glaciation hypothesis". Quaternary Science Reviews 24 (11): 1. Bibcode:2005QSRv...24....1R. doi:10.1016/j.quascirev.2004.07.010.
Schelling, Thomas C. (2002). "Greenhouse Effect". In David R. Henderson (ed.). Concise Encyclopedia of Economics (1st ed.). Library of Economics and Liberty. OCLC 317650570, 50016270 and 163149563
Schmidt, G. A., Shindel, D. T. and Harder, S. (2004). "A note of the relationship between ice core methane concentrations and insolation". Geophys. Res. Lett. 31 (23): L23206. Bibcode:2004GeoRL..3123206S. doi:10.1029/2004GL021083.
Wagner, Frederic H., (ed.) Climate Change in Western North America: Evidence and Environmental Effects (2009). ISBN 978-0-87480-906-0
External links
 Wikiquote has quotations related to: Climate change

Listen to this article (info/dl)













This audio file was created from a revision of the "Climate change" article dated 2010-03-19, and does not reflect subsequent edits to the article. (Audio help)
More spoken articles
Sound-icon.svg
 Wikinews has news related to:
Climate change

 Wikimedia Commons has media related to Climate change.
Climate Summit 2011 – London from the B4E Business for the Environment
Climate Change at DMOZ
Climate Change Resources from SourceWatch
Climate Change from the UCB Libraries GovPubs
Climate Change from the Met Office (UK)
Global Climate Change from NASA (US)
Climate Change: Evidence & Causes, from the Royal Society and the U.S. National Academy of Sciences
Ocean Motion: Satellites Record Weakening North Atlantic Current
Intergovernmental Panel on Climate Change (IPCC)
United Nations University's 'Our World 2' Climate Change Video Briefs
United Nations University's 'Our World 2' Indigenous voices on climate change films
Climate Change on In Our Time at the BBC. (listen now)
Climate Change Performance Index 2010
Climate Library at Center for Ocean Solutions, Stanford University
Climate Change: Coral Reefs on the Edge An online video presentation by Prof. Ove Hoegh-Guldberg, University of Auckland
Climate & Development Knowledge Network, run by an alliance of organisations that include PwC and ODI
What We Know — The Reality, Risks and Response to Climate Change 2014 report, Am. Assn. for the Advancement of Science
Gateway to the United Nations Systems Work on Climate Change - The Science
Gateway to the United Nations Systems Work on Climate Change - Mitigation


[hide]
v ·
 t ·
 e
 
Global warming and climate change




[show] 
Temperatures
















[show] 
Causes


























































[show] 
History












[show] 
Opinion and climate change





































[show] 
Politics















[show] 
Potential effects and issues

















































[show] 
Mitigation



























































[show] 
Proposed adaptations























Glossary of climate change ·
 Index of climate change articles ·
 Category:Climate change ·
 Category:Global warming ·
 Portal:Global warming
 

 


Categories: Climate change
Climate and weather statistics
Climate history
Carbon finance
Economic problems

















Navigation menu



Create account
Log in



Article

Talk









Read

View source

View history

















Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikimedia Shop

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Print/export
Create a book
Download as PDF
Printable version

Languages
العربية
বাংলা
Bikol Central
Български
Bosanski
Català
Čeština
Cymraeg
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Føroyskt
Français
Gaeilge
Galego
한국어
Հայերեն
हिन्दी
Hrvatski
Bahasa Indonesia
Italiano
עברית
ಕನ್ನಡ
ქართული
Қазақша
Lietuvių
Magyar
മലയാളം
Bahasa Melayu
မြန်မာဘာသာ
Nederlands
नेपाली
日本語
Norsk bokmål
Norsk nynorsk
Occitan
پښتو
Polski
Português
Русский
Shqip
සිංහල
Simple English
Slovenčina
Slovenščina
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog
தமிழ்
Türkçe
Українська
Tiếng Việt
粵語
中文
Edit links
This page was last modified on 20 August 2014 at 10:23.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Privacy policy
About Wikipedia
Disclaimers
Contact Wikipedia
Developers
Mobile view
Wikimedia Foundation
Powered by MediaWiki
    
http://en.wikipedia.org/wiki/Climate_change








Global warming
From Wikipedia, the free encyclopedia
Jump to: navigation, search

This article is about the current change in Earth's climate. For general discussion of how the climate can change, see Climate change. For other uses, see Global warming (disambiguation).
Page semi-protected
This is a featured article. Click here for more information.



refer to caption
Global mean land-ocean temperature change from 1880–2013, relative to the 1951–1980 mean. The black line is the annual mean and the red line is the 5-year running mean. The green bars show uncertainty estimates. Source: NASA GISS. (click for larger image)

Map of temperature changes across the world

key to above map of temperature changes
The map shows the 10-year average (2000–2009) global mean temperature anomaly relative to the 1951–1980 mean. The largest temperature increases are in the Arctic and the Antarctic Peninsula. Source: NASA Earth Observatory[1]

refer to caption
Fossil fuel related carbon dioxide (CO2) emissions compared to five of the IPCC's "SRES" emissions scenarios. The dips are related to global recessions. Image source: Skeptical Science.
Global warming is the observed century-scale rise in the average temperature of Earth's climate system.[2] Since 1971, 90% of the increased energy has been stored in the oceans, mostly in the 0 to 700m region.[3] Despite the oceans' dominant role in energy storage, the term "global warming" is also used to refer to increases in average temperature of the air and sea at Earth's surface.[4] Since the early 20th century, the global air and sea surface temperature has increased about 0.8 °C (1.4 °F), with about two-thirds of the increase occurring since 1980.[5] Each of the last three decades has been successively warmer at the Earth's surface than any preceding decade since 1850.[6]
Scientific understanding of the cause of global warming has been increasing. In its fourth assessment (AR4 2007) of the relevant scientific literature, the Intergovernmental Panel on Climate Change (IPCC) reported that scientists were more than 90% certain that most of global warming was being caused by increasing concentrations of greenhouse gases produced by human activities.[7][8][9] In 2010 that finding was recognized by the national science academies of all major industrialized nations.[10][a]
Affirming these findings in 2013, the IPCC stated that the largest driver of global warming is carbon dioxide (CO2) emissions from fossil fuel combustion, cement production, and land use changes such as deforestation.[12] Its 2013 report states:

Human influence has been detected in warming of the atmosphere and the ocean, in changes in the global water cycle, in reductions in snow and ice, in global mean sea level rise, and in changes in some climate extremes. This evidence for human influence has grown since AR4. It is extremely likely (95-100%) that human influence has been the dominant cause of the observed warming since the mid-20th century. - IPCC AR5 WG1 Summary for Policymakers[13]
Climate model projections were summarized in the 2013 Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). They indicated that during the 21st century the global surface temperature is likely to rise a further 0.3 to 1.7 °C (0.5 to 3.1 °F) for their lowest emissions scenario using stringent mitigation and 2.6 to 4.8 °C (4.7 to 8.6 °F) for their highest.[14] The ranges of these estimates arise from the use of models with differing sensitivity to greenhouse gas concentrations.[15][16]
Future climate change and associated impacts will vary from region to region around the globe.[17][18] The effects of an increase in global temperature include a rise in sea levels and a change in the amount and pattern of precipitation, as well as a probable expansion of subtropical deserts.[19] Warming is expected to be strongest in the Arctic, with the continuing retreat of glaciers, permafrost and sea ice. Other likely effects of the warming include more frequent extreme weather events including heat waves, droughts and heavy rainfall; ocean acidification; and species extinctions due to shifting temperature regimes. Effects significant to humans include the threat to food security from decreasing crop yields and the loss of habitat from inundation.[20][21]
Proposed policy responses to global warming include mitigation by emissions reduction, adaptation to its effects, building systems resilient to its effects, and possible future climate engineering. Most countries are parties to the United Nations Framework Convention on Climate Change (UNFCCC),[22] whose ultimate objective is to prevent dangerous anthropogenic (i.e., human-induced) climate change.[23] Parties to the UNFCCC have adopted a range of policies designed to reduce greenhouse gas emissions[24][25][26][27] and to assist in adaptation to global warming.[24][27][28][29] Parties to the UNFCCC have agreed that deep cuts in emissions are required,[30] and that future global warming should be limited to below 2.0 °C (3.6 °F) relative to the pre-industrial level.[30][b] Reports published in 2011 by the United Nations Environment Programme[31] and the International Energy Agency[32] suggest that efforts as of the early 21st century to reduce emissions may be inadequate to meet the UNFCCC's 2 °C target.
Emissions of greenhouse gases grew 2.2% per year between 2000 and 2010, compared with 1.3% per year from 1970 to 2000.[33]


Contents  [hide]
1 Observed temperature changes
2 Initial causes of temperature changes (external forcings) 2.1 Greenhouse gases
2.2 Particulates and soot
2.3 Solar activity
3 Feedback
4 Climate models
5 Observed and expected environmental effects 5.1 Natural systems
5.2 Ecological systems
5.3 Long-term effects
5.4 Large-scale and abrupt impacts
6 Observed and expected effects on social systems 6.1 Food security
6.2 Habitat inundation
7 Proposed policy responses to global warming 7.1 Mitigation
7.2 Adaptation
7.3 Climate engineering
8 Discourse about global warming 8.1 Political discussion
8.2 Scientific discussion
8.3 Discussion by the public and in popular media 8.3.1 Surveys of public opinion

9 Etymology
10 See also
11 Notes
12 Citations
13 References
14 Further reading
15 External links

Observed temperature changes
Main article: Instrumental temperature record

refer to caption and adjacent text

 Two millennia of mean surface temperatures according to different reconstructions from climate proxies, each smoothed on a decadal scale, with the instrumental temperature record overlaid in black.
refer to caption and adjacent text

NOAA graph of Global Annual Temperature Anomalies 1950–2012, showing the El Niño-Southern Oscillation
refer to caption and image description

 Earth has been in radiative imbalance since at least the 1970s, where less energy leaves the atmosphere than enters it. Most of this extra energy has been absorbed by the oceans.[34] It is very likely that human activities substantially contributed to this increase in ocean heat content.[35]
The Earth's average surface temperature rose by 0.74±0.18 °C over the period 1906–2005. The rate of warming over the last half of that period was almost double that for the period as a whole (0.13±0.03 °C per decade, versus 0.07±0.02 °C per decade). The urban heat island effect is very small, estimated to account for less than 0.002 °C of warming per decade since 1900.[36] Temperatures in the lower troposphere have increased between 0.13 and 0.22 °C (0.22 and 0.4 °F) per decade since 1979, according to satellite temperature measurements. Climate proxies show the temperature to have been relatively stable over the one or two thousand years before 1850, with regionally varying fluctuations such as the Medieval Warm Period and the Little Ice Age.[37]
The warming that is evident in the instrumental temperature record is consistent with a wide range of observations, as documented by many independent scientific groups.[38] Examples include sea level rise (due to melting of snow and ice and because water above 3.98 °C expands as it warms),[39] widespread melting of snow and ice,[40] increased heat content of the oceans,[38] increased humidity,[38] and the earlier timing of spring events,[41] e.g., the flowering of plants.[42] The probability that these changes could have occurred by chance is virtually zero.[38]
Recent estimates by NASA's Goddard Institute for Space Studies (GISS) and the National Climatic Data Center show that 2005 and 2010 tied for the planet's warmest year since reliable, widespread instrumental measurements became available in the late 19th century, exceeding 1998 by a few hundredths of a degree.[43][44][45] Estimates by the Climatic Research Unit (CRU) show 2005 as the second warmest year, behind 1998 with 2003 and 2010 tied for third warmest year, however, "the error estimate for individual years ... is at least ten times larger than the differences between these three years."[46] The World Meteorological Organization (WMO) WMO statement on the status of the global climate in 2010 explains that, "The 2010 nominal value of +0.53 °C ranks just ahead of those of 2005 (+0.52 °C) and 1998 (+0.51 °C), although the differences between the three years are not statistically significant..."[47] Every year from 1986 to 2013 has seen annual average global land and ocean surface temperatures above the 1961–1990 average.[48][49]
Surface temperatures in 1998 were unusually warm because global temperatures are affected by the El Niño-Southern Oscillation (ENSO), and the strongest El Niño in the past century occurred during that year.[50] Global temperature is subject to short-term fluctuations that overlay long term trends and can temporarily mask them. The relative stability in surface temperature from 2002 to 2009—which has been dubbed the global warming hiatus by the media and some scientists—[51] is consistent with such an episode.[52][53] 2010 was also an El Niño year. On the low swing of the oscillation, 2011 as a La Niña year was cooler but it was still the 11th warmest year since records began in 1880. Of the 13 warmest years since 1880, 11 were the years from 2001 to 2011. Over the more recent record, 2011 was the warmest La Niña year in the period from 1950 to 2011, and was close to 1997 which was not at the lowest point of the cycle.[54]
Temperature changes vary over the globe. Since 1979, land temperatures have increased about twice as fast as ocean temperatures (0.25 °C per decade against 0.13 °C per decade).[55] Ocean temperatures increase more slowly than land temperatures because of the larger effective heat capacity of the oceans and because the ocean loses more heat by evaporation.[56] The northern hemisphere is also naturally warmer than the southern hemisphere mainly because of meridional heat transport in the oceans which has a differential of about 0.9 petawatts northwards,[57] with an additional contribution from the albedo differences between the polar regions. Since the beginning of industrialisation the temperature difference between the hemispheres has increased due to melting of sea ice and snow in the North.[58] Average arctic temperatures have been increasing at almost twice the rate of the rest of the world in the past 100 years; however arctic temperatures are also highly variable.[59] Although more greenhouse gases are emitted in the Northern than Southern Hemisphere this does not contribute to the difference in warming because the major greenhouse gases persist long enough to mix between hemispheres.[60]
The thermal inertia of the oceans and slow responses of other indirect effects mean that climate can take centuries or longer to adjust to changes in forcing. Climate commitment studies indicate that even if greenhouse gases were stabilized at year 2000 levels, a further warming of about 0.5 °C (0.9 °F) would still occur.[61]
Initial causes of temperature changes (external forcings)
Main article: Attribution of recent climate change



refer to caption and adjacent text
Greenhouse effect schematic showing energy flows between space, the atmosphere, and Earth's surface. Energy exchanges are expressed in watts per square meter (W/m2).

refer to caption and adjacent text
This graph, known as the Keeling Curve, shows the increase of atmospheric carbon dioxide (CO2) concentrations from 1958–2013. Monthly CO2 measurements display seasonal oscillations in an upward trend; each year's maximum occurs during the Northern Hemisphere's late spring, and declines during its growing season as plants remove some atmospheric CO2.
The climate system can respond to changes in external forcings.[62][63] External forcings can "push" the climate in the direction of warming or cooling.[64] Examples of external forcings include changes in atmospheric composition (e.g., increased concentrations of greenhouse gases), solar luminosity, volcanic eruptions, and variations in Earth's orbit around the Sun.[65] Orbital cycles vary slowly over tens of thousands of years and at present are in an overall cooling trend which would be expected to lead towards a glacial period within the current ice age, but the 20th century instrumental temperature record shows a sudden rise in global temperatures.[66]
Greenhouse gases
Main articles: Greenhouse gas, Greenhouse effect, Radiative forcing and Carbon dioxide in Earth's atmosphere
See also: List of countries by carbon dioxide emissions
The greenhouse effect is the process by which absorption and emission of infrared radiation by gases in a planet's atmosphere warm its lower atmosphere and surface. It was proposed by Joseph Fourier in 1824, discovered in 1860 by John Tyndall,[67] was first investigated quantitatively by Svante Arrhenius in 1896,[68] and was developed in the 1930s through 1960s by Guy Stewart Callendar.[69]



refer to caption and image description
Annual world greenhouse gas emissions, in 2005, by sector.

refer to caption and image description
Percentage share of global cumulative energy-related CO
 2 emissions between 1751 and 2012 across different regions.
On Earth, naturally occurring amounts of greenhouse gases have a mean warming effect of about 33 °C (59 °F).[70][c][70] Without the Earth's atmosphere, the temperature across almost the entire surface of the Earth would be below freezing.[71] The major greenhouse gases are water vapor, which causes about 36–70% of the greenhouse effect; carbon dioxide (CO2), which causes 9–26%; methane (CH4), which causes 4–9%; and ozone (O3), which causes 3–7%.[72][73][74] Clouds also affect the radiation balance through cloud forcings similar to greenhouse gases.
Human activity since the Industrial Revolution has increased the amount of greenhouse gases in the atmosphere, leading to increased radiative forcing from CO2, methane, tropospheric ozone, CFCs and nitrous oxide. According to work published in 2007, the concentrations of CO2 and methane have increased by 36% and 148% respectively since 1750.[75] These levels are much higher than at any time during the last 800,000 years, the period for which reliable data has been extracted from ice cores.[76][77][78][79] Less direct geological evidence indicates that CO2 values higher than this were last seen about 20 million years ago.[80] Fossil fuel burning has produced about three-quarters of the increase in CO2 from human activity over the past 20 years. The rest of this increase is caused mostly by changes in land-use, particularly deforestation.[81] Estimates of global CO2 emissions in 2011 from fossil fuel combustion, including cement production and gas flaring, was 34.8 billion tonnes (9.5 ± 0.5 PgC), an increase of 54% above emissions in 1990. Coal burning was responsible for 43% of the total emissions, oil 34%, gas 18%, cement 4.9% and gas flaring 0.7%[82] In May 2013, it was reported that readings for CO2 taken at the world's primary benchmark site in Mauna Loa surpassed 400 ppm. According to professor Brian Hoskins, this is likely the first time CO2 levels have been this high for about 4.5 million years.[83][84]
Over the last three decades of the 20th century, gross domestic product per capita and population growth were the main drivers of increases in greenhouse gas emissions.[85] CO2 emissions are continuing to rise due to the burning of fossil fuels and land-use change.[86][87]:71 Emissions can be attributed to different regions, e.g., see the figure opposite. Attribution of emissions due to land-use change is a controversial issue.[88][89]:289
Emissions scenarios, estimates of changes in future emission levels of greenhouse gases, have been projected that depend upon uncertain economic, sociological, technological, and natural developments.[90] In most scenarios, emissions continue to rise over the century, while in a few, emissions are reduced.[91][92] Fossil fuel reserves are abundant, and will not limit carbon emissions in the 21st century.[93] Emission scenarios, combined with modelling of the carbon cycle, have been used to produce estimates of how atmospheric concentrations of greenhouse gases might change in the future. Using the six IPCC SRES "marker" scenarios, models suggest that by the year 2100, the atmospheric concentration of CO2 could range between 541 and 970 ppm.[94] This is 90–250% above the concentration in the year 1750.
The popular media and the public often confuse global warming with ozone depletion, i.e., the destruction of stratospheric ozone by chlorofluorocarbons.[95][96] Although there are a few areas of linkage, the relationship between the two is not strong. Reduced stratospheric ozone has had a slight cooling influence on surface temperatures, while increased tropospheric ozone has had a somewhat larger warming effect.[97]

refer to caption and body text

 Atmospheric CO2 concentration from 650,000 years ago to near present, using ice core proxy data and direct measurements
Particulates and soot

Refer to caption

Ship tracks can be seen as lines in these clouds over the Atlantic Ocean on the east coast of the United States. The climatic impacts from particulate forcing could have a large effect on climate through the indirect effect.
Global dimming, a gradual reduction in the amount of global direct irradiance at the Earth's surface, was observed from 1961 until at least 1990.[98] The main cause of this dimming is particulates produced by volcanoes and human made pollutants, which exerts a cooling effect by increasing the reflection of incoming sunlight. The effects of the products of fossil fuel combustion – CO2 and aerosols – have partially offset one another in recent decades, so that net warming has been due to the increase in non-CO2 greenhouse gases such as methane.[99] Radiative forcing due to particulates is temporally limited due to wet deposition which causes them to have an atmospheric lifetime of one week. Carbon dioxide has a lifetime of a century or more, and as such, changes in particulate concentrations will only delay climate changes due to carbon dioxide.[100] Black carbon is second only to carbon dioxide for its contribution to global warming.[101] In addition to their direct effect by scattering and absorbing solar radiation, particulates have indirect effects on the Earth's radiation budget. Sulfates act as cloud condensation nuclei and thus lead to clouds that have more and smaller cloud droplets. These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets, known as the Twomey effect.[102] This effect also causes droplets to be of more uniform size, which reduces growth of raindrops and makes the cloud more reflective to incoming sunlight, known as the Albrecht effect.[103] Indirect effects are most noticeable in marine stratiform clouds, and have very little radiative effect on convective clouds. Indirect effects of particulates represent the largest uncertainty in radiative forcing.[104]
Soot may cool or warm the surface, depending on whether it is airborne or deposited. Atmospheric soot directly absorbs solar radiation, which heats the atmosphere and cools the surface. In isolated areas with high soot production, such as rural India, as much as 50% of surface warming due to greenhouse gases may be masked by atmospheric brown clouds.[105] When deposited, especially on glaciers or on ice in arctic regions, the lower surface albedo can also directly heat the surface.[106] The influences of particulates, including black carbon, are most pronounced in the tropics and sub-tropics, particularly in Asia, while the effects of greenhouse gases are dominant in the extratropics and southern hemisphere.[107]

Refer to caption and adjacent text

 Satellite observations of Total Solar Irradiance from 1979–2006.
Refer to caption

 Contribution of natural factors and human activities to radiative forcing of climate change.[108] Radiative forcing values are for the year 2005, relative to the pre-industrial era (1750).[108] The contribution of solar irradiance to radiative forcing is 5% the value of the combined radiative forcing due to increases in the atmospheric concentrations of carbon dioxide, methane and nitrous oxide.[109]
Solar activity
Main articles: Solar variation and Solar wind
Since 1978, output from the Sun has been precisely measured by satellites.[110] These measurements indicate that the Sun's output has not increased since 1978, so the warming during the past 30 years cannot be attributed to an increase in solar energy reaching the Earth.
Climate models have been used to examine the role of the sun in recent climate change.[111] Models are unable to reproduce the rapid warming observed in recent decades when they only take into account variations in solar output and volcanic activity. Models are, however, able to simulate the observed 20th century changes in temperature when they include all of the most important external forcings, including human influences and natural forcings.
Another line of evidence against the sun having caused recent climate change comes from looking at how temperatures at different levels in the Earth's atmosphere have changed.[112] Models and observations show that greenhouse warming results in warming of the lower atmosphere (called the troposphere) but cooling of the upper atmosphere (called the stratosphere).[113][114] Depletion of the ozone layer by chemical refrigerants has also resulted in a strong cooling effect in the stratosphere. If the sun were responsible for observed warming, warming of both the troposphere and stratosphere would be expected.[115]
Feedback
Main articles: Climate change feedback and Climate sensitivity



 Sea ice, shown here in Nunavut, in northern Canada, reflects more sunshine, while open ocean absorbs more, accelerating melting.
The climate system includes a range of feedbacks, which alter the response of the system to changes in external forcings. Positive feedbacks increase the response of the climate system to an initial forcing, while negative feedbacks reduce the response of the climate system to an initial forcing.[116]
There are a range of feedbacks in the climate system, including water vapor, changes in ice-albedo (snow and ice cover affect how much the Earth's surface absorbs or reflects incoming sunlight), clouds, and changes in the Earth's carbon cycle (e.g., the release of carbon from soil).[117] The main negative feedback is the energy which the Earth's surface radiates into space as infrared radiation.[118] According to the Stefan-Boltzmann law, if the absolute temperature (as measured in kelvin) doubles[d], radiated energy increases by a factor of 16 (2 to the 4th power).[119]
Feedbacks are an important factor in determining the sensitivity of the climate system to increased atmospheric greenhouse gas concentrations. Other factors being equal, a higher climate sensitivity means that more warming will occur for a given increase in greenhouse gas forcing.[120] Uncertainty over the effect of feedbacks is a major reason why different climate models project different magnitudes of warming for a given forcing scenario. More research is needed to understand the role of clouds[116] and carbon cycle feedbacks in climate projections.[121]
The IPCC projections given in the lede span the "likely" range (greater than 66% probability, based on expert judgement)[7] for the selected emissions scenarios. However, the IPCC's projections do not reflect the full range of uncertainty.[122] The lower end of the "likely" range appears to be better constrained than the upper end of the "likely" range.[122]
Climate models
Main article: Global climate model



refer to caption
Calculations of global warming prepared in or before 2001 from a range of climate models under the SRES A2 emissions scenario, which assumes no action is taken to reduce emissions and regionally divided economic development.

refer to caption and image description
Projected change in annual mean surface air temperature from the late 20th century to the middle 21st century, based on a medium emissions scenario (SRES A1B).[123] This scenario assumes that no future policies are adopted to limit greenhouse gas emissions. Image credit: NOAA GFDL.[124]
A climate model is a computerized representation of the five components of the climate system: Atmosphere, hydrosphere, cryosphere, land surface, and biosphere.[125] Such models are based on scientific disciplines such as fluid dynamics, thermodynamics as well as physical processes such as radiative transfer. The models take into account various components, such as local air movement, temperature, clouds, and other atmospheric properties; ocean temperature, salt content, and circulation; ice cover on land and sea; the transfer of heat and moisture from soil and vegetation to the atmosphere; chemical and biological processes; solar variability and others.
Although researchers attempt to include as many processes as possible, simplifications of the actual climate system are inevitable because of the constraints of available computer power and limitations in knowledge of the climate system. Results from models can also vary due to different greenhouse gas inputs and the model's climate sensitivity. For example, the uncertainty in IPCC's 2007 projections is caused by (1) the use of multiple models[122] with differing sensitivity to greenhouse gas concentrations,[126] (2) the use of differing estimates of humanities' future greenhouse gas emissions,[122] (3) any additional emissions from climate feedbacks that were not included in the models IPCC used to prepare its report, i.e., greenhouse gas releases from permafrost.[127]
The models do not assume the climate will warm due to increasing levels of greenhouse gases. Instead the models predict how greenhouse gases will interact with radiative transfer and other physical processes. One of the mathematical results of these complex equations is a prediction whether warming or cooling will occur.[128]
Recent research has called special attention to the need to refine models with respect to the effect of clouds[129] and the carbon cycle.[130][131][132]
Models are also used to help investigate the causes of recent climate change by comparing the observed changes to those that the models project from various natural and human-derived causes. Although these models do not unambiguously attribute the warming that occurred from approximately 1910 to 1945 to either natural variation or human effects, they do indicate that the warming since 1970 is dominated by man-made greenhouse gas emissions.[65]
The physical realism of models is tested by examining their ability to simulate contemporary or past climates.[133] Climate models produce a good match to observations of global temperature changes over the last century, but do not simulate all aspects of climate.[134] Not all effects of global warming are accurately predicted by the climate models used by the IPCC. Observed Arctic shrinkage has been faster than that predicted.[135] Precipitation increased proportional to atmospheric humidity, and hence significantly faster than global climate models predict.[136][137]
Observed and expected environmental effects
Main article: Effects of global warming

Refer to caption and adjacent text

 Projections of global mean sea level rise by Parris and others.[138] Probabilities have not been assigned to these projections.[139] Therefore, none of these projections should be interpreted as a "best estimate" of future sea level rise. Image credit: NOAA.
"Detection" is the process of demonstrating that climate has changed in some defined statistical sense, without providing a reason for that change. Detection does not imply attribution of the detected change to a particular cause. "Attribution" of causes of climate change is the process of establishing the most likely causes for the detected change with some defined level of confidence.[140] Detection and attribution may also be applied to observed changes in physical, ecological and social systems.[141]
Natural systems
Main article: Physical impacts of climate change
Global warming has been detected in a number of natural systems. Some of these changes are described in the section on observed temperature changes, e.g., sea level rise and widespread decreases in snow and ice extent.[142] Anthropogenic forcing has likely contributed to some of the observed changes, including sea level rise, changes in climate extremes (such as the number of warm and cold days), declines in Arctic sea ice extent, and to glacier retreat.[143]

refer to caption

 Sparse records indicate that glaciers have been retreating since the early 1800s. In the 1950s measurements began that allow the monitoring of glacial mass balance, reported to the World Glacier Monitoring Service (WGMS) and the National Snow and Ice Data Center (NSIDC)
Over the 21st century,[144] the IPCC projects that global mean sea level could rise by 0.18–0.59 m.[145] The IPCC do not provide a best estimate of global mean sea level rise, and their upper estimate of 59 cm is not an upper-bound, i.e., global mean sea level could rise by more than 59 cm by 2100.[145] The IPCC's projections are conservative, and may underestimate future sea level rise.[146] Over the 21st century, Parris and others[138] suggest that global mean sea level could rise by 0.2 to 2.0 m (0.7–6.6 ft), relative to mean sea level in 1992.
Widespread coastal flooding would be expected if several degrees of warming is sustained for millennia.[147] For example, sustained global warming of more than 2 °C (relative to pre-industrial levels) could lead to eventual sea level rise of around 1 to 4 m due to thermal expansion of sea water and the melting of glaciers and small ice caps.[147] Melting of the Greenland ice sheet could contribute an additional 4 to 7.5 m over many thousands of years.[147]
Changes in regional climate are expected to include greater warming over land, with most warming at high northern latitudes, and least warming over the Southern Ocean and parts of the North Atlantic Ocean.[148] During the 21st century, glaciers[149] and snow cover[150] are projected to continue their widespread retreat. Projections of declines in Arctic sea ice vary.[151][152] Recent projections suggest that Arctic summers could be ice-free (defined as ice extent less than 1 million square km) as early as 2025-2030.[153]
Future changes in precipitation are expected to follow existing trends, with reduced precipitation over subtropical land areas, and increased precipitation at subpolar latitudes and some equatorial regions.[154] Projections suggest a probable increase in the frequency and severity of some extreme weather events, such as heat waves.[155]
Ecological systems
Main article: Climate change and ecosystems
In terrestrial ecosystems, the earlier timing of spring events, and poleward and upward shifts in plant and animal ranges, have been linked with high confidence to recent warming.[142] Future climate change is expected to particularly affect certain ecosystems, including tundra, mangroves, and coral reefs.[148] It is expected that most ecosystems will be affected by higher atmospheric CO2 levels, combined with higher global temperatures.[156] Overall, it is expected that climate change will result in the extinction of many species and reduced diversity of ecosystems.[157]
Increases in atmospheric CO2 concentrations have led to an increase in ocean acidity.[158] Dissolved CO2 increases ocean acidity, which is measured by lower pH values.[158] Between 1750 to 2000, surface-ocean pH has decreased by ≈0.1, from ≈8.2 to ≈8.1.[159] Surface-ocean pH has probably not been below ≈8.1 during the past 2 million years.[159] Projections suggest that surface-ocean pH could decrease by an additional 0.3–0.4 units by 2100.[160] Future ocean acidification could threaten coral reefs, fisheries, protected species, and other natural resources of value to society.[158][161]
Long-term effects
Main article: Long-term effects of global warming
On the timescale of centuries to millennia, the magnitude of global warming will be determined primarily by anthropogenic CO2 emissions.[162] This is due to carbon dioxide's very long lifetime in the atmosphere.[162]
Stabilizing global average temperature would require reductions in anthropogenic CO2 emissions.[162] Reductions in emissions of non-CO2 anthropogenic GHGs (e.g., methane and nitrous oxide) would also be necessary.[162][163] For CO2, anthropogenic emissions would need to be reduced by more than 80% relative to their peak level.[162] Even if this were to be achieved, global average temperatures would remain close to their highest level for many centuries.[162]
Large-scale and abrupt impacts
Main article: Abrupt climate change
Climate change could result in global, large-scale changes in natural and social systems.[164] Two examples are ocean acidification caused by increased atmospheric concentrations of carbon dioxide, and the long-term melting of ice sheets, which contributes to sea level rise.[165]
Some large-scale changes could occur abruptly, i.e., over a short time period, and might also be irreversible. An example of abrupt climate change is the rapid release of methane and carbon dioxide from permafrost, which would lead to amplified global warming.[166][167] Scientific understanding of abrupt climate change is generally poor.[168] However, the probability of abrupt changes appears to be very low.[166][169] Factors that may increase the probability of abrupt climate change include higher magnitudes of global warming, warming that occurs more rapidly, and warming that is sustained over longer time periods.[169]
Observed and expected effects on social systems
Further information: Effects of global warming § Social systems and Regional effects of global warming § Regional impacts
The effects of climate change on human systems, mostly due to warming or shifts in precipitation patterns, or both, have been detected worldwide. Production of wheat and maize globally has been impacted by climate change. While crop production has increased in some mid-latitude regions such as the UK and Northeast China, economic losses due to extreme weather events have increased globally. There has been a shift from cold- to heat-related mortality in some regions as a result of warming. Livelihoods of indigenous peoples of the Arctic have been altered by climate change, and there is emerging evidence of climate change impacts on livelihoods of indigenous peoples in other regions. Regional impacts of climate change are now observable at more locations than before, on all continents and across ocean regions.[170] The future social impacts of climate change will be uneven.[171] Many risks are expected to increase with higher magnitudes of global warming.[172] All regions are at risk of experiencing negative impacts.[173] Low-latitude, less developed areas face the greatest risk.[174] Examples of impacts include:
Food: Crop production will probably be negatively affected in low latitude countries, while effects at northern latitudes may be positive or negative.[175] Global warming of around 4.6 °C relative to pre-industrial levels could pose a large risk to global and regional food security.[176]
Health: Generally impacts will be more negative than positive.[177] Impacts include: the effects of extreme weather, leading to injury and loss of life;[178] and indirect effects, such as undernutrition brought on by crop failures.[179]



Food security
See also: Climate change and agriculture



Maize field in South Africa.
Under present trends, by 2030, maize production in Southern Africa could decrease by up to 30%, while rice, millet and maize in South Asia could decrease by up to 10%.[180] By 2080, yields in developing countries could decrease by 10% to 25% on average while India could see a drop of 30% to 40%.[181] By 2100, while the population of three billion is expected to double, rice and maize yields in the tropics are expected to decrease by 20–40% because of higher temperatures without accounting for the decrease in yields as a result of soil moisture and water supplies stressed by rising temperatures.[182]
Future warming of around 3 °C (by 2100, relative to 1990–2000) could result in increased crop yields in mid- and high-latitude areas, but in low-latitude areas, yields could decline, increasing the risk of malnutrition.[183] A similar regional pattern of net benefits and costs could occur for economic (market-sector) effects.[184] Warming above 3 °C could result in crop yields falling in temperate regions, leading to a reduction in global food production.[185]
Habitat inundation



 Map showing where natural disasters caused/aggravated by global warming may occur.
Further information: Effects of climate change on humans § Displacement/migration
See also: Climate refugee
In small islands and mega deltas, inundation as a result of sea level rise is expected to threaten vital infrastructure and human settlements.[186][187] This could lead to issues of homelessness in countries with low lying areas such as Bangladesh, as well as statelessness for populations in countries such as the Maldives and Tuvalu.[188]
Proposed policy responses to global warming
There are different views over what the appropriate policy response to climate change should be.[189] These competing views weigh the benefits of limiting emissions of greenhouse gases against the costs. In general, it seems likely that climate change will impose greater damages and risks in poorer regions.[190]
Mitigation
Main article: Climate change mitigation

Refer to caption and image description

 The graph on the right shows three "pathways" to meet the UNFCCC's 2 °C target, labelled "global technology", "decentralised solutions", and "consumption change". Each pathway shows how various measures (e.g., improved energy efficiency, increased use of renewable energy) could contribute to emissions reductions. Image credit: PBL Netherlands Environmental Assessment Agency.[191]
Reducing the amount of future climate change is called mitigation of climate change.[192] The IPCC defines mitigation as activities that reduce greenhouse gas (GHG) emissions, or enhance the capacity of carbon sinks to absorb GHGs from the atmosphere.[193] Studies indicate substantial potential for future reductions in emissions by a combination of emission-reducing activities such as energy conservation, increased energy efficiency, and satisfying more of society's power demands with renewable energy and nuclear energy sources.[194] Climate mitigation also includes acts to enhance natural sinks, such as reforestation.[194]
In order to limit warming to within the lower range described in the IPCC's "Summary Report for Policymakers"[195] it will be necessary to adopt policies that will limit greenhouse gas emissions to one of several significantly different scenarios described in the full report.[196] This will become more and more difficult with each year of increasing volumes of emissions and even more drastic measures will be required in later years to stabilize a desired atmospheric concentration of greenhouse gases. Energy-related carbon-dioxide (CO2) emissions in 2010 were the highest in history, breaking the prior record set in 2008.[197]
Adaptation
Main article: Adaptation to global warming
Other policy responses include adaptation to climate change. Adaptation to climate change may be planned, either in reaction to or anticipation of climate change, or spontaneous, i.e., without government intervention.[198] Planned adaptation is already occurring on a limited basis.[194] The barriers, limits, and costs of future adaptation are not fully understood.[194]
A concept related to adaptation is "adaptive capacity", which is the ability of a system (human, natural or managed) to adjust to climate change (including climate variability and extremes) to moderate potential damages, to take advantage of opportunities, or to cope with consequences.[199] Unmitigated climate change (i.e., future climate change without efforts to limit greenhouse gas emissions) would, in the long term, be likely to exceed the capacity of natural, managed and human systems to adapt.[200]
Environmental organizations and public figures have emphasized changes in the climate and the risks they entail, while promoting adaptation to changes in infrastructural needs and emissions reductions.[201]
Climate engineering
Main article: Climate engineering
Climate engineering (sometimes called by the more expansive term 'geoengineering'), is the deliberate modification of the climate. It has been investigated as a possible response to global warming, e.g. by NASA[202] and the Royal Society.[203] Techniques under research fall generally into the categories solar radiation management and carbon dioxide removal, although various other schemes have been suggested. A study from 2014 investigated the most common climate engineering methods and concluded they are either ineffective or have potentially severe side effects and cannot be stopped without causing rapid climate change.[204]
Discourse about global warming
Political discussion
Main article: Politics of global warming
Further information: 2011 United Nations Climate Change Conference, 2012 United Nations Climate Change Conference and 2013 United Nations Climate Change Conference

refer to caption

 Article 2 of the UN Framework Convention refers explicitly to "stabilization of greenhouse gas concentrations."[205] In order to stabilize the atmospheric concentration of CO
 2, emissions worldwide would need to be dramatically reduced from their present level.[206]
Most countries are Parties to the United Nations Framework Convention on Climate Change (UNFCCC).[207] The ultimate objective of the Convention is to prevent dangerous human interference of the climate system.[208] As is stated in the Convention, this requires that GHG concentrations are stabilized in the atmosphere at a level where ecosystems can adapt naturally to climate change, food production is not threatened, and economic development can proceed in a sustainable fashion.[209] The Framework Convention was agreed in 1992, but since then, global emissions have risen.[210] During negotiations, the G77 (a lobbying group in the United Nations representing 133 developing nations)[211]:4 pushed for a mandate requiring developed countries to "[take] the lead" in reducing their emissions.[212] This was justified on the basis that: the developed world's emissions had contributed most to the stock of GHGs in the atmosphere; per-capita emissions (i.e., emissions per head of population) were still relatively low in developing countries; and the emissions of developing countries would grow to meet their development needs.[89]:290 This mandate was sustained in the Kyoto Protocol to the Framework Convention,[89]:290 which entered into legal effect in 2005.[213]
In ratifying the Kyoto Protocol, most developed countries accepted legally binding commitments to limit their emissions. These first-round commitments expired in 2012.[213] US President George W. Bush rejected the treaty on the basis that "it exempts 80% of the world, including major population centers such as China and India, from compliance, and would cause serious harm to the US economy."[211]:5
At the 15th UNFCCC Conference of the Parties, held in 2009 at Copenhagen, several UNFCCC Parties produced the Copenhagen Accord.[214] Parties associated with the Accord (140 countries, as of November 2010)[215]:9 aim to limit the future increase in global mean temperature to below 2 °C.[216] A preliminary assessment published in November 2010 by the United Nations Environment Programme (UNEP) suggests a possible "emissions gap" between the voluntary pledges made in the Accord and the emissions cuts necessary to have a "likely" (greater than 66% probability) chance of meeting the 2 °C objective.[215]:10–14 The UNEP assessment takes the 2 °C objective as being measured against the pre-industrial global mean temperature level. To having a likely chance of meeting the 2 °C objective, assessed studies generally indicated the need for global emissions to peak before 2020, with substantial declines in emissions thereafter.
The 16th Conference of the Parties (COP16) was held at Cancún in 2010. It produced an agreement, not a binding treaty, that the Parties should take urgent action to reduce greenhouse gas emissions to meet a goal of limiting global warming to 2 °C above pre-industrial temperatures. It also recognized the need to consider strengthening the goal to a global average rise of 1.5 °C.[217]
Scientific discussion
See also: Scientific opinion on climate change and Surveys of scientists' views on climate change
Most scientists agree that humans are contributing to observed climate change.[86][218] A meta study of academic papers concerning global warming, published between 1991 and 2011 and accessible from Web of Knowledge, found that among those whose abstracts expressed a position on the cause of global warming, 97.2% supported the consensus view that it is man made.[219] In an October 2011 paper published in the International Journal of Public Opinion Research, researchers from George Mason University analyzed the results of a survey of 489 American scientists working in academia, government, and industry. Of those surveyed, 97% agreed that that global temperatures have risen over the past century and 84% agreed that "human-induced greenhouse warming" is now occurring, only 5% disagreeing that human activity is a significant cause of global warming.[220][221] National science academies have called on world leaders for policies to cut global emissions.[222]
In the scientific literature, there is a strong consensus that global surface temperatures have increased in recent decades and that the trend is caused mainly by human-induced emissions of greenhouse gases. No scientific body of national or international standing disagrees with this view.[223][224]
Discussion by the public and in popular media
Main articles: climate change denial, global warming controversy and media coverage of climate change
The global warming controversy refers to a variety of disputes, substantially more pronounced in the popular media than in the scientific literature,[225][226] regarding the nature, causes, and consequences of global warming. The disputed issues include the causes of increased global average air temperature, especially since the mid-20th century, whether this warming trend is unprecedented or within normal climatic variations, whether humankind has contributed significantly to it, and whether the increase is wholly or partially an artifact of poor measurements. Additional disputes concern estimates of climate sensitivity, predictions of additional warming, and what the consequences of global warming will be.
From 1990–1997 in the United States, conservative think tanks mobilized to challenge the legitimacy of global warming as a social problem. They challenged the scientific evidence, argued that global warming will have benefits, and asserted that proposed solutions would do more harm than good.[227]
Some people dispute aspects of climate change science.[218][228] Organizations such as the libertarian Competitive Enterprise Institute, conservative commentators, and some companies such as ExxonMobil have challenged IPCC climate change scenarios, funded scientists who disagree with the scientific consensus, and provided their own projections of the economic cost of stricter controls.[229][230][231][232] Some fossil fuel companies have scaled back their efforts in recent years,[233] or called for policies to reduce global warming.[234]
Surveys of public opinion
Main article: Public opinion on climate change
Researchers at the University of Michigan have found that the public's belief as to the causes of global warming depends on the wording choice used in the polls.[235]
In 2007–2008 Gallup Polls surveyed 127 countries. Over a third of the world's population was unaware of global warming, with people in developing countries less aware than those in developed, and those in Africa the least aware. Of those aware, Latin America leads in belief that temperature changes are a result of human activities while Africa, parts of Asia and the Middle East, and a few countries from the Former Soviet Union lead in the opposite belief.[236] There is a significant contrast of the opinions of the concept and the appropriate response between Europe and the United States. Nick Pidgeon of Cardiff University said that "results show the different stages of engagement about global warming on each side of the Atlantic", adding, "The debate in Europe is about what action needs to be taken, while many in the US still debate whether climate change is happening."[237][238] A 2010 poll by the Office for National Statistics found that 75% of UK respondents were at least "fairly convinced" that the world's climate is changing, compared to 87% in a similar survey in 2006.[239] A January 2011 ICM poll in the UK found 83% of respondents viewed climate change as a current or imminent threat, while 14% said it was no threat. Opinion was unchanged from an August 2009 poll asking the same question, though there had been a slight polarisation of opposing views.[240]
By 2010, with 111 countries surveyed, Gallup determined that there was a substantial decrease in the number of Americans and Europeans who viewed global warming as a serious threat. In the US, a little over half the population (53%) now viewed it as a serious concern for either themselves or their families; this was 10% below the 2008 poll (63%). Latin America had the biggest rise in concern, with 73% saying global warming was a serious threat to their families.[241] That global poll also found that people are more likely to attribute global warming to human activities than to natural causes, except in the USA where nearly half (47%) of the population attributed global warming to natural causes.[242]
A March–May 2013 survey by Pew Research Center for the People & the Press polled 39 countries about global threats. According to 54% of those questioned, global warming featured top of the perceived global threats.[243] In a January 2013 survey, Pew found that 69% of Americans say there is solid evidence that the Earth's average temperature has been getting warmer over the past few decades, up six points since November 2011 and 12 points since 2009.[244]
Etymology
According to Erik M. Conway, global warming became the dominant popular term after June 1988, when NASA climate scientist James Hansen used the term in a testimony to Congress[245] when he said: "global warming has reached a level such that we can ascribe with a high degree of confidence a cause and effect relationship between the greenhouse effect and the observed warming."[246] Conway claims that this testimony was widely reported in the media and subsequently global warming became the commonly used term by both the press and in public discourse. However, he also points out that "global climate change" is the more scientifically accurate term, because changes in Earth systems are not limited to surface temperatures.[245]
See also

Portal icon Global warming portal
Portal icon Science portal
Book icon Book: Global warming

Climate change and agriculture
Effects of global warming on oceans
Environmental impact of the coal industry
Geologic temperature record
Global cooling
Glossary of climate change
Greenhouse gas emissions accounting
History of climate change science
Index of climate change articles
Scientific opinion on climate change
Notes
a.Jump up ^ The 2001 joint statement was signed by the national academies of science of Australia, Belgium, Brazil, Canada, the Caribbean, the People's Republic of China, France, Germany, India, Indonesia, Ireland, Italy, Malaysia, New Zealand, Sweden, and the UK.[11] The 2005 statement added Japan, Russia, and the U.S. The 2007 statement added Mexico and South Africa. The Network of African Science Academies, and the Polish Academy of Sciences have issued separate statements. Professional scientific societies include American Astronomical Society, American Chemical Society, American Geophysical Union, American Institute of Physics, American Meteorological Society, American Physical Society, American Quaternary Association, Australian Meteorological and Oceanographic Society, Canadian Foundation for Climate and Atmospheric Sciences, Canadian Meteorological and Oceanographic Society, European Academy of Sciences and Arts, European Geosciences Union, European Science Foundation, Geological Society of America, Geological Society of Australia, Geological Society of London-Stratigraphy Commission, InterAcademy Council, International Union of Geodesy and Geophysics, International Union for Quaternary Research, National Association of Geoscience Teachers, National Research Council (US), Royal Meteorological Society, and World Meteorological Organization.
b.Jump up ^ Earth has already experienced almost 1/2 of the 2.0 °C (3.6 °F) described in the Cancún Agreement. In the last 100 years, Earth's average surface temperature increased by about 0.8 °C (1.4 °F) with about two thirds of the increase occurring over just the last three decades.[5]
c.Jump up ^ The greenhouse effect produces an average worldwide temperature increase of about 33 °C (59 °F) compared to black body predictions without the greenhouse effect, not an average surface temperature of 33 °C (91 °F). The average worldwide surface temperature is about 14 °C (57 °F).
d.Jump up ^ A rise in temperature from 10 °C to 20 °C is not a doubling of absolute temperature; a rise from (273 + 10) K = 283 K to (273 + 20) K = 293 K is an increase of (293 − 283)/283 = 3.5 %.
Citations
1.Jump up ^ 2009 Ends Warmest Decade on Record. NASA Earth Observatory Image of the Day, 22 January 2010.
2.Jump up ^ "Warming of the climate system is unequivocal" p.2, IPCC, Climate Change 2013: The Physical Science Basis - Summary for Policymakers, Observed Changes in the Climate System, p. 2, in IPCC AR5 WG1 2013.
3.Jump up ^ "Ocean warming dominates the increase in energy stored in the climate system, accounting for more than 90% of the energy accumulated between 1971 and 2010." p.6,IPCC, Climate Change 2013: The Physical Science Basis - Summary for Policymakers, Observed Changes in the Climate System, p. 6, in IPCC AR5 WG1 2013.
4.Jump up ^ Riebeek, H. (June 3, 2010). Global Warming: Feature Articles. Earth Observatory, part of the EOS Project Science Office located at NASA Goddard Space Flight Center."Global warming is the unusually rapid increase in Earth's average surface temperature over the past century primarily due to the greenhouse gases released as people burn fossil fuels."
5.^ Jump up to: a b America's Climate Choices. Washington, D.C.: The National Academies Press. 2011. p. 15. ISBN 978-0-309-14585-5. "The average temperature of the Earth's surface increased by about 1.4 °F (0.8 °C) over the past 100 years, with about 1.0 °F (0.6 °C) of this warming occurring over just the past three decades."
6.Jump up ^ "Each of the last three decades has been successively warmer at the Earth's surface than any preceding decade since 1850." p.3, IPCC, Climate Change 2013: The Physical Science Basis - Summary for Policymakers, Observed Changes in the Climate System, p. 3, in IPCC AR5 WG1 2013.
7.^ Jump up to: a b "Three different approaches are used to describe uncertainties each with a distinct form of language. * * * Where uncertainty in specific outcomes is assessed using expert judgment and statistical analysis of a body of evidence (e.g. observations or model results), then the following likelihood ranges are used to express the assessed probability of occurrence: virtually certain >99%; extremely likely >95%; very likely >90%; likely >66%;......" IPCC, Synthesis Report, Treatment of Uncertainty, in IPCC AR4 SYR 2007.
8.Jump up ^ "Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic GHG concentrations. This is an advance since the TAR's conclusion that 'most of the observed warming over the last 50 years is likely to have been due to the increase in GHG concentrations'."IPCC, Synthesis Report, Section 2.4: Attribution of climate change, in IPCC AR4 SYR 2007.
9.Jump up ^ America's Climate Choices: Panel on Advancing the Science of Climate Change; National Research Council (2010). Advancing the Science of Climate Change. Washington, D.C.: The National Academies Press. ISBN 0-309-14588-0. "(p1) ... there is a strong, credible body of evidence, based on multiple lines of research, documenting that climate is changing and that these changes are in large part caused by human activities. While much remains to be learned, the core phenomenon, scientific questions, and hypotheses have been examined thoroughly and have stood firm in the face of serious scientific debate and careful evaluation of alternative explanations. * * * (p21-22) Some scientific conclusions or theories have been so thoroughly examined and tested, and supported by so many independent observations and results, that their likelihood of subsequently being found to be wrong is vanishingly small. Such conclusions and theories are then regarded as settled facts. This is the case for the conclusions that the Earth system is warming and that much of this warming is very likely due to human activities."
10.Jump up ^ "Joint Science Academies' Statement" (PDF). Retrieved 6 January 2014.
11.Jump up ^ Kirby, Alex (17 May 2001). "Science academies back Kyoto". BBC News. Retrieved 27 July 2011.
12.Jump up ^ "Total radiative forcing is positive, and has led to an uptake of energy by the climate system. The largest contribution to total radiative forcing is caused by the increase in the atmospheric concentration of CO2 since 1750." (p 11) "From 1750 to 2011, CO2 emissions from fossil fuel combustion and cement production have released 375 [345 to 405] GtC to the atmosphere, while deforestation and other land use change are estimated to have released 180 [100 to 260] GtC." (p 10), IPCC, Climate Change 2013: The Physical Science Basis - Summary for Policymakers, Observed Changes in the Climate System, p. 10&11, in IPCC AR5 WG1 2013.
13.Jump up ^ IPCC, Climate Change 2013: The Physical Science Basis - Summary for Policymakers, Observed Changes in the Climate System, p. 15, in IPCC AR5 WG1 2013. "Extremely likely" is defined as a 95-100% likelihood on p 2.
14.Jump up ^ Stocker et al., Technical Summary, in IPCC AR5 WG1 2013.
15.Jump up ^ Schneider Von Deimling, Thomas; Held, Ganopolski, Rahmstorf (2006). "Climate sensitivity estimated from ensemble simulations of glacial climate". Climate Dynamics 27 (2–3): 149. Bibcode:2006ClDy...27..149S. doi:10.1007/s00382-006-0126-8. CiteSeerX: 10.1.1.172.3264.
16.Jump up ^ Meehl et al., Chap. 10: Global Climate Projections, Section 10.5: Quantifying the Range of Climate Change, in IPCC AR4 WG1 2007.
17.Jump up ^ Parry, M.L., et al., "Technical summary", Box TS.6. The main projected impacts for regions, in IPCC AR4 WG2 2007, pp. 59–63
18.Jump up ^ Solomon et al., Technical Summary, Section TS.5.3: Regional-Scale Projections, in IPCC AR4 WG1 2007.
19.Jump up ^ Lu, Jian; Vechhi, Gabriel A.; Reichler, Thomas (2007). "Expansion of the Hadley cell under global warming" (PDF). Geophysical Research Letters 34 (6): L06805. Bibcode:2007GeoRL..3406805L. doi:10.1029/2006GL028443.
20.Jump up ^ Battisti, David; Naylor (2009). "Historical warnings of future food insecurity with unprecedented seasonal heat". Science 323 (5911): 240–4. doi:10.1126/science.1164363. PMID 19131626. Retrieved 13 April 2012.
21.Jump up ^ US NRC 2012, p. 31
22.Jump up ^ United Nations Framework Convention on Climate Change (UNFCCC) (2011). Status of Ratification of the Convention. UNFCCC Secretariat: Bonn, Germany: UNFCCC.. Most countries in the world are Parties to the United Nations Framework Convention on Climate Change (UNFCCC), which has adopted the 2 °C target. As of 25 November 2011, there are 195 parties (194 states and 1 regional economic integration organization (the European Union)) to the UNFCCC.
23.Jump up ^ "Article 2". The United Nations Framework Convention on Climate Change. "The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner. Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner", excerpt from the founding international treaty which entered into force on 21 March 1994.
24.^ Jump up to: a b United Nations Framework Convention on Climate Change (UNFCCC) (2005). Sixth compilation and synthesis of initial national communications from Parties not included in Annex I to the Convention. Note by the secretariat. Executive summary (PDF). Geneva (Switzerland): United Nations Office at Geneva.
25.Jump up ^ Gupta, S. et al. 13.2 Climate change and other related policies, in IPCC AR4 WG3 2007.
26.Jump up ^ "Ch 4: Climate change and the energy outlook"., in IEA 2009, pp. 173–184 (pp.175-186 of PDF)
27.^ Jump up to: a b United Nations Framework Convention on Climate Change (UNFCCC) (2011). Compilation and synthesis of fifth national communications. Executive summary. Note by the secretariat (PDF). Geneva (Switzerland): United Nations Office at Geneva.
28.Jump up ^ Adger, et al., Chapter 17: Assessment of adaptation practices, options, constraints and capacity, Executive summary, in IPCC AR4 WG2 2007.
29.Jump up ^ 6. Generating the funding needed for mitigation and adaptation (PDF), in World Bank (2010). World Development Report 2010: Development and Climate Change. Washington, D.C., USA: The International Bank for Reconstruction and Development / The World Bank. pp. 262–263.
30.^ Jump up to: a b United Nations Framework Convention on Climate Change (UNFCCC) (2011). Conference of the Parties – Sixteenth Session: Decision 1/CP.16: The Cancun Agreements: Outcome of the work of the Ad Hoc Working Group on Long-term Cooperative Action under the Convention (English): Paragraph 4 (PDF). UNFCCC Secretariat: Bonn, Germany: UNFCCC. p. 3. "(...) deep cuts in global greenhouse gas emissions are required according to science, and as documented in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, with a view to reducing global greenhouse gas emissions so as to hold the increase in global average temperature below 2 °C above preindustrial levels"
31.Jump up ^ United Nations Environment Programme (UNEP) (November 2011). "Executive Summary" (PDF). Bridging the Emissions Gap: A UNEP Synthesis Report. Nairobi, Kenya: UNEP. p. 8. ISBN 978-92-807-3229-0. UNEP Stock Number: DEW/1470/NA
32.Jump up ^ International Energy Agency (IEA) (2011). "Executive Summary (English)" (PDF). World Energy Outlook 2011. Paris, France: IEA. p. 2.
33.Jump up ^ IPCC, Climate Change 2014: Mitigation of Climate Change - Summary for Policymakers, Trends in stocks and flows of greenhouse gases and their drivers, p.6, in IPCC AR5 WG3 2014.
34.Jump up ^ Rhein, M., et al. (7 June 2013): Box 3.1, in: Chapter 3: Observations: Ocean (final draft accepted by IPCC Working Group I), pp.11-12 (pp.14-15 of PDF chapter), in: IPCC AR5 WG1 2013
35.Jump up ^ IPCC (11 November 2013): D.3 Detection and Attribution of Climate Change, in: Summary for Policymakers (finalized version), p.15, in: IPCC AR5 WG1 2013
36.Jump up ^ Trenberth et al., Ch. 3, Observations: Atmospheric Surface and Climate Change, Section 3.2.2.2: Urban Heat Islands and Land Use Effects, p. 244, in IPCC AR4 WG1 2007.
37.Jump up ^ Jansen et al., Ch. 6, Palaeoclimate, Section 6.6.1.1: What Do Reconstructions Based on Palaeoclimatic Proxies Show?, pp. 466–478, in IPCC AR4 WG1 2007.
38.^ Jump up to: a b c d Kennedy, J.J., et al. (2010). "How do we know the world has warmed? in: 2. Global Climate, in: State of the Climate in 2009". Bull.Amer.Meteor.Soc. 91 (7): 26.
39.Jump up ^ Kennedy, C. (10 July 2012). ClimateWatch Magazine >> State of the Climate: 2011 Global Sea Level. NOAA Climate Services Portal.
40.Jump up ^ "Summary for Policymakers". Direct Observations of Recent Climate Change., in IPCC AR4 WG1 2007
41.Jump up ^ "Summary for Policymakers". B. Current knowledge about observed impacts of climate change on the natural and human environment., in IPCC AR4 WG2 2007
42.Jump up ^ Rosenzweig, C., et al. "Ch 1: Assessment of Observed Changes and Responses in Natural and Managed Systems". Sec 1.3.5.1 Changes in phenology., in IPCC AR4 WG2 2007, p. 99
43.Jump up ^ Cole, Steve; Leslie McCarthy. "NASA – NASA Research Finds 2010 Tied for Warmest Year on Record" (Feature). NASA. Retrieved 3 March 2011.
44.Jump up ^ Hansen, James E.; et al. (12 January 2006). "Goddard Institute for Space Studies, GISS Surface Temperature Analysis". NASA Goddard Institute for Space Studies. Retrieved 17 January 2007.
45.Jump up ^ "State of the Climate: Global Analysis for Annual 2009". 15 January 2010. Retrieved 3 May 2011.
46.Jump up ^ Jones, Phil. "CRU Information Sheet no. 1: Global Temperature Record". Climatic Research Unit, School of Environmental Sciences, University of East Anglia. Retrieved 3 May 2011.
47.Jump up ^ World Meteorological Organization (2011). WMO statement on the status of the global climate in 2010 (PDF). World Meteorological Organization. p. 2. ISBN 978-92-63-11074-9.
48.Jump up ^ "Press release no. 972: WMO annual climate statement confirms 2012 as among top ten warmest years". WMO media centre (Press release). Geneva: World Meteorological Organization. 2 May 2013. Retrieved 16 February 2014.
49.Jump up ^ "Press release no. 983: 2013 among top ten warmest on record". WMO media centre (Press release). Geneva: World Meteorological Organization. 5 February 2014. Retrieved 16 February 2014.
50.Jump up ^ Changnon, Stanley A.; Bell, Gerald D. (2000). El Niño, 1997–1998: The Climate Event of the Century. London: Oxford University Press. ISBN 0-19-513552-0.
51.Jump up ^ England, Matthew (February 2014). "Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus". Nature Climate Change. doi:10.1038/nclimate2106.
52.Jump up ^ Knight, J.; Kenney, J.J.; Folland, C.; Harris, G.; Jones, G.S.; Palmer, M.; Parker, D.; Scaife, A.; Stott, P. (August 2009). "Do Global Temperature Trends Over the Last Decade Falsify Climate Predictions? [in "State of the Climate in 2008"]" (PDF). Bull.Amer.Meteor.Soc. 90 (8): S75–S79. Retrieved 13 August 2011.
53.Jump up ^ Global temperature slowdown – not an end to climate change. UK Met Office. Retrieved 20 March 2011.
54.Jump up ^ "NOAA National Climatic Data Center, State of the Climate: Global Analysis for Annual 2011". NOAA. 19 January 2012. Retrieved 31 January 2012.
55.Jump up ^ Trenberth et al., Chap 3, Observations: Atmospheric Surface and Climate Change, Executive Summary, p. 237, in IPCC AR4 WG1 2007.
56.Jump up ^ Rowan T. Sutton, Buwen Dong, Jonathan M. Gregory (2007). "Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations". Geophysical Research Letters 34 (2): L02701. Bibcode:2007GeoRL..3402701S. doi:10.1029/2006GL028164. Retrieved 19 September 2007.
57.Jump up ^ Carl, Wunsch (November 2005). "The Total Meridional Heat Flux and Its Oceanic and Atmospheric Partition". Journal of Climate 18 (21): 4374–4380. Bibcode:2005JCli...18.4374W. doi:10.1175/JCLI3539.1. Retrieved 25 April 2013.
58.Jump up ^ Feulner, Georg; Stefan Rahmstorf, Anders Levermann, and Silvia Volkwardt (March 2013). "On the Origin of the Surface Air Temperature Difference Between the Hemispheres in Earth's Present-Day Climate". Journal of Climate: 130325101629005. doi:10.1175/JCLI-D-12-00636.1. Retrieved 25 April 2013.
59.Jump up ^ TS.3.1.2 Spatial Distribution of Changes in Temperature, Circulation and Related Variables - AR4 WGI Technical Summary
60.Jump up ^ Ehhalt et al., Chapter 4: Atmospheric Chemistry and Greenhouse Gases, Section 4.2.3.1: Carbon monoxide (CO) and hydrogen (H2), p. 256, in IPCC TAR WG1 2001.
61.Jump up ^ Meehl, Gerald A.; et al. (18 March 2005). "How Much More Global Warming and Sea Level Rise" (PDF). Science 307 (5716): 1769–1772. Bibcode:2005Sci...307.1769M. doi:10.1126/science.1106663. PMID 15774757. Retrieved 11 February 2007.
62.Jump up ^ Group (28 November 2004). "Forcings (filed under: Glossary)". RealClimate.
63.Jump up ^ Pew Center on Global Climate Change / Center for Climate and Energy Solutions (September 2006). Science Brief 1: The Causes of Global Climate Change. Arlington, Virginia, USA: Center for Climate and Energy Solutions., p.2
64.Jump up ^ US NRC 2012, p. 9
65.^ Jump up to: a b Hegerl et al., Chapter 9: Understanding and Attributing Climate Change, Section 9.4.1.5: The Influence of Other Anthropogenic and Natural Forcings, in IPCC AR4 WG1 2007, pp. 690–691. "Recent estimates indicate a relatively small combined effect of natural forcings on the global mean temperature evolution of the second half of the 20th century, with a small net cooling from the combined effects of solar and volcanic forcings." p. 690
66.Jump up ^ Kaufman, D. S.; Schneider, D. P.; McKay, N. P.; Ammann, C. M.; Bradley, R. S.; Briffa, K. R.; Miller, G. H.; Otto-Bliesner, B. L.; Overpeck, J. T.; Vinther, B. M.; Abbott, M.; Axford, M.; Bird, Y.; Birks, B.; Bjune, H. J. B.; Briner, A. E.; Cook, J.; Chipman, T.; Francus, M.; Gajewski, P.; Geirsdottir, K.; Hu, A.; Kutchko, F. S.; Lamoureux, B.; Loso, S.; MacDonald, M.; Peros, G.; Porinchu, M.; Schiff, D.; Seppa, C.; Seppa, H.; Arctic Lakes 2k Project Members (2009). "Recent Warming Reverses Long-Term Arctic Cooling". Science 325 (5945): 1236–1239. doi:10.1126/science.1173983. PMID 19729653. edit
"Arctic Warming Overtakes 2,000 Years of Natural Cooling". UCAR. 3 September 2009. Retrieved 8 June 2011.
Bello, David (4 September 2009). "Global Warming Reverses Long-Term Arctic Cooling". Scientific American. Retrieved 8 June 2011.
Mann, M. E.; Zhang, Z.; Hughes, M. K.; Bradley, R. S.; Miller, S. K.; Rutherford, S.; Ni, F. (2008). "Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia". Proceedings of the National Academy of Sciences 105 (36): 13252–7. doi:10.1073/pnas.0805721105. PMC 2527990. PMID 18765811. edit
67.Jump up ^ Tyndall, John (1861). "On the Absorption and Radiation of Heat by Gases and Vapours, and on the Physical Connection of Radiation, Absorption, and Conduction". Philosophical Magazine. 4 22: 169–94, 273–85. Retrieved 8 May 2013.
68.Jump up ^ Weart, Spencer (2008). "The Carbon Dioxide Greenhouse Effect". The Discovery of Global Warming. American Institute of Physics. Retrieved 21 April 2009.
69.Jump up ^ The Callendar Effect: the life and work of Guy Stewart Callendar (1898–1964) Amer Meteor Soc., Boston. ISBN 978-1-878220-76-9
70.^ Jump up to: a b Le Treut et al. "Chapter 1: Historical Overview of Climate Change Science". FAQ 1.1., p. 97, in IPCC AR4 WG1 2007: "To emit 240 W m–2, a surface would have to have a temperature of around −19 °C. This is much colder than the conditions that actually exist at the Earth's surface (the global mean surface temperature is about 14 °C). Instead, the necessary −19 °C is found at an altitude about 5 km above the surface."
71.Jump up ^ Blue, Jessica. "What is the Natural Greenhouse Effect?". National Geographic (magazine). Retrieved 27 May 2013.
72.Jump up ^ Kiehl, J.T.; Trenberth, K.E. (1997). "Earth's Annual Global Mean Energy Budget" (PDF). Bulletin of the American Meteorological Society 78 (2): 197–208. Bibcode:1997BAMS...78..197K. doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2. ISSN 1520-0477. Archived from the original on 24 June 2008. Retrieved 21 April 2009.
73.Jump up ^ Schmidt, Gavin (6 April 2005). "Water vapour: feedback or forcing?". RealClimate. Retrieved 21 April 2009.
74.Jump up ^ Russell, Randy (16 May 2007). "The Greenhouse Effect & Greenhouse Gases". University Corporation for Atmospheric Research Windows to the Universe. Retrieved 27 December 2009.
75.Jump up ^ EPA (2007). "Recent Climate Change: Atmosphere Changes". Climate Change Science Program. United States Environmental Protection Agency. Retrieved 21 April 2009.
76.Jump up ^ Spahni, Renato; et al. (November 2005). "Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores". Science 310 (5752): 1317–1321. Bibcode:2005Sci...310.1317S. doi:10.1126/science.1120132. PMID 16311333.
77.Jump up ^ Siegenthaler, Urs; et al. (November 2005). "Stable Carbon Cycle–Climate Relationship During the Late Pleistocene" (PDF). Science 310 (5752): 1313–1317. Bibcode:2005Sci...310.1313S. doi:10.1126/science.1120130. PMID 16311332. Retrieved 25 August 2010.
78.Jump up ^ Petit, J. R.; et al. (3 June 1999). "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica" (PDF). Nature 399 (6735): 429–436. Bibcode:1999Natur.399..429P. doi:10.1038/20859. Retrieved 27 December 2009.
79.Jump up ^ Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J. M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; Stocker, T. F. (2008). "High-resolution carbon dioxide concentration record 650,000–800,000 years before present". Nature 453 (7193): 379–382. doi:10.1038/nature06949. PMID 18480821. edit
80.Jump up ^ Pearson, PN; Palmer, MR (2000). "Atmospheric carbon dioxide concentrations over the past 60 million years". Nature 406 (6797): 695–699. doi:10.1038/35021000. PMID 10963587.
81.Jump up ^ IPCC, Summary for Policymakers, Concentrations of atmospheric greenhouse gases ..., p. 7, in IPCC TAR WG1 2001.
82.Jump up ^ Le Quéré, C.; Andres, R. J.; Boden, T.; Conway, T.; Houghton, R. A.; House, J. I.; Marland, G.; Peters, G. P.; van der Werf, G.; Ahlström, A.; Andrew, R. M.; Bopp, L.; Canadell, J. G.; Ciais, P.; Doney, S. C.; Enright, C.; Friedlingstein, P.; Huntingford, C.; Jain, A. K.; Jourdain, C.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Levis, S.; Levy, P.; Lomas, M.; Poulter, B.; Raupach, M. R.; Schwinger, J.; Sitch, S.; Stocker, B. D.; Viovy, N.; Zaehle, S.; Zeng, N. (2 December 2012). "The global carbon budget 1959–2011". Earth System Science Data Discussions 5 (2): 1107–1157. Bibcode:2012ESSDD...5.1107L. doi:10.5194/essdd-5-1107-2012.
83.Jump up ^ "Carbon dioxide passes symbolic mark". BBC. 2013-05-10. Retrieved 2013-05-27.
84.Jump up ^ Pilita Clark (2013-05-10). "CO2 at highest level for millions of years" ((registration required)). The Financial Times. Retrieved 2013-05-27.
85.Jump up ^ Rogner, H.-H., et al., Chap. 1, Introduction, Section 1.3.1.2: Intensities, in IPCC AR4 WG3 2007.
86.^ Jump up to: a b NRC (2008). "Understanding and Responding to Climate Change". Board on Atmospheric Sciences and Climate, US National Academy of Sciences. p. 2. Retrieved 9 November 2010.
87.Jump up ^ World Bank (2010). World Development Report 2010: Development and Climate Change. The International Bank for Reconstruction and Development / The World Bank, 1818 H Street NW, Washington, D.C. 20433. doi:10.1596/978-0-8213-7987-5. ISBN 978-0-8213-7987-5. Archived from the original on 5 March 2010. Retrieved 6 April 2010.
88.Jump up ^ Banuri et al., Chapter 3: Equity and Social Considerations, Section 3.3.3: Patterns of greenhouse gas emissions, and Box 3.1, pp. 92–93 in IPCC SAR WG3 1996.
89.^ Jump up to: a b c Liverman, D.M. (2008). "Conventions of climate change: constructions of danger and the dispossession of the atmosphere" (PDF). Journal of Historical Geography 35 (2): 279–296. doi:10.1016/j.jhg.2008.08.008. Retrieved 10 May 2011.
90.Jump up ^ Fisher et al., Chapter 3: Issues related to mitigation in the long-term context, Section 3.1: Emissions scenarios: Issues related to mitigation in the long term context in IPCC AR4 WG3 2007.
91.Jump up ^ Morita, Chapter 2: Greenhouse Gas Emission Mitigation Scenarios and Implications, Section 2.5.1.4: Emissions and Other Results of the SRES Scenarios, in IPCC TAR WG3 2001.
92.Jump up ^ Rogner et al., Ch. 1: Introduction, Figure 1.7, in IPCC AR4 WG3 2007.
93.Jump up ^ IPCC, Summary for Policymakers, Introduction, paragraph 6, in IPCC TAR WG3 2001.
94.Jump up ^ Prentence et al., Chapter 3: The Carbon Cycle and Atmospheric Carbon Dioxide Executive Summary, in IPCC TAR WG1 2001.
95.Jump up ^ Newell, P.J., 2000: Climate for change: non-state actors and the global politics of greenhouse. Cambridge University Press, ISBN 0-521-63250-1.
96.Jump up ^ Talk of the Nation. "Americans Fail the Climate Quiz". Npr.org. Retrieved 27 December 2011.
97.Jump up ^ Shindell, Drew; Faluvegi, Greg; Lacis, Andrew; Hansen, James; Ruedy, Reto; Aguilar, Elliot (2006). "Role of tropospheric ozone increases in 20th-century climate change". Journal of Geophysical Research 111 (D8): D08302. Bibcode:2006JGRD..11108302S. doi:10.1029/2005JD006348.
98.Jump up ^ Solomon, S; D. Qin; M. Manning; Z. Chen; M. Marquis; K.B. Averyt; M. Tignor; H.L. Miller, eds. (2007). "3.4.4.2 Surface Radiation". Climate Change 2007: Working Group I: The Physical Science Basis. ISBN 978-0-521-88009-1.
99.Jump up ^ Hansen, J; Sato, M; Ruedy, R; Lacis, A; Oinas, V (2000). "Global warming in the twenty-first century: an alternative scenario". Proc. Natl. Acad. Sci. U.S.A. 97 (18): 9875–80. Bibcode:2000PNAS...97.9875H. doi:10.1073/pnas.170278997. PMC 27611. PMID 10944197.
100.Jump up ^ Ramanathan, V.; Carmichael, G. (2008). "Global and regional climate changes due to black carbon". Nature Geoscience 1 (4): 221–227. Bibcode:2008NatGe...1..221R. doi:10.1038/ngeo156.
101.Jump up ^ V. Ramanathan and G. Carmichael, supra note 1, at 221 (". . . emissions of black carbon are the second strongest contribution to current global warming, after carbon dioxide emissions.") Numerous scientists also calculate that black carbon may be second only to CO2 in its contribution to climate change, including Tami C. Bond & Haolin Sun, Can Reducing Black Carbon Emissions Counteract Global Warming, ENVIRON. SCI. TECHN. (2005), at 5921 ("BC is the second or third largest individual warming agent, following carbon dioxide and methane."); and J. Hansen, A Brighter Future, 53 CLIMATE CHANGE 435 (2002), available at http://pubs.giss.nasa.gov/docs/2002/2002_Hansen_1.pdf (calculating the climate forcing of BC at 1.0±0.5 W/m2).
102.Jump up ^ Twomey, S. (1977). "Influence of pollution on shortwave albedo of clouds". J. Atmos. Sci. 34 (7): 1149–1152. Bibcode:1977JAtS...34.1149T. doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2. ISSN 1520-0469.
103.Jump up ^ Albrecht, B. (1989). "Aerosols, cloud microphysics, and fractional cloudiness". Science 245 (4923): 1227–1239. Bibcode:1989Sci...245.1227A. doi:10.1126/science.245.4923.1227. PMID 17747885.
104.Jump up ^ IPCC, "Aerosols, their Direct and Indirect Effects", pp. 291–292 in IPCC TAR WG1 2001.
105.Jump up ^ Ramanathan, V.; Chung, C.; Kim, D.; Bettge, T.; Buja, L.; Kiehl, J. T.; Washington, W. M.; Fu, Q.; Sikka, D. R.; Wild, M. (2005). "Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle" (Full free text). Proceedings of the National Academy of Sciences 102 (15): 5326–5333. Bibcode:2005PNAS..102.5326R. doi:10.1073/pnas.0500656102. PMC 552786. PMID 15749818. edit
106.Jump up ^ Ramanathan, V., et al. (2008). "Report Summary" (PDF). Atmospheric Brown Clouds: Regional Assessment Report with Focus on Asia. United Nations Environment Programme.
107.Jump up ^ Ramanathan, V., et al. (2008). "Part III: Global and Future Implications" (PDF). Atmospheric Brown Clouds: Regional Assessment Report with Focus on Asia. United Nations Environment Programme.
108.^ Jump up to: a b IPCC, Summary for Policymakers, Human and Natural Drivers of Climate Change, Figure SPM.2, in IPCC AR4 WG1 2007.
109.Jump up ^ US Environmental Protection Agency (2009). "3.2.2 Solar Irradiance". Volume 3: Attribution of Observed Climate Change. Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act. EPA's Response to Public Comments. US Environmental Protection Agency. Archived from the original on 16 June 2011. Retrieved 2011-06-23.
110.Jump up ^ US NRC 2008, p. 6
111.Jump up ^ Hegerl, et al., Chapter 9: Understanding and Attributing Climate Change, Frequently Asked Question 9.2: Can the Warming of the 20th century be Explained by Natural Variability?, in IPCC AR4 WG1 2007.
112.Jump up ^ Simmon, R. and D. Herring (November 2009). "Notes for slide number 7, titled "Satellite evidence also suggests greenhouse gas warming," in presentation, "Human contributions to global climate change"". Presentation library on the U.S. National Oceanic and Atmospheric Administration's Climate Services website. Archived from the original on 3 July 2011. Retrieved 2011-06-23.
113.Jump up ^ Hegerl et al., Chapter 9: Understanding and Attributing Climate Change, Frequently Asked Question 9.2: Can the Warming of the 20th century be Explained by Natural Variability?, in IPCC AR4 WG1 2007.
114.Jump up ^ Randel, William J.; Shine, Keith P.; Austin, John et al. (2009). "An update of observed stratospheric temperature trends". Journal of Geophysical Research 114 (D2): D02107. Bibcode:2009JGRD..11402107R. doi:10.1029/2008JD010421.
115.Jump up ^ USGCRP 2009, p. 20
116.^ Jump up to: a b Jackson, R. and A. Jenkins (17 November 2012). Vital signs of the planet: global climate change and global warming: uncertainties. Earth Science Communications Team at NASA's Jet Propulsion Laboratory / California Institute of Technology.
117.Jump up ^ Riebeek, H. (16 June 2011). The Carbon Cycle: Feature Articles: Effects of Changing the Carbon Cycle. Earth Observatory, part of the EOS Project Science Office located at NASA Goddard Space Flight Center.
118.Jump up ^ US National Research Council (2003). "Ch. 1 Introduction". Understanding Climate Change Feedbacks. Washington, D.C., USA: National Academies Press., p.19
119.Jump up ^ Lindsey, R. (14 January 2009). Earth's Energy Budget (p.4), in: Climate and Earth's Energy Budget: Feature Articles. Earth Observatory, part of the EOS Project Science Office, located at NASA Goddard Space Flight Center.
120.Jump up ^ US National Research Council (2006). "Ch. 1 Introduction to Technical Chapters". Surface Temperature Reconstructions for the Last 2,000 Years. Washington, D.C., USA: National Academies Press., pp.26-27
121.Jump up ^ AMS Council (20 August 2012). 2012 American Meteorological Society (AMS) Information Statement on Climate Change. Boston, Massachusetts, USA: AMS.
122.^ Jump up to: a b c d Meehl, G.A., et al. "Ch 10: Global Climate Projections". Sec 10.5.4.6 Synthesis of Projected Global Temperature at Year 2100., in IPCC AR4 WG1 2007
123.Jump up ^ NOAA (January 2007). "Patterns of greenhouse warming". GFDL Climate Modeling Research Highlights (Princeton, New Jersey, USA: The National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL)) 1 (6)., revision 2/2/2007, 8:50.08 AM.
124.Jump up ^ NOAA Geophysical Fluid Dynamics Laboratory (GFDL) (9 October 2012). NOAA GFDL Climate Research Highlights Image Gallery: Patterns of Greenhouse Warming. NOAA GFDL.
125.Jump up ^ IPCC, Glossary A-D: "Climate Model", in IPCC AR4 SYR 2007.
126.Jump up ^ Karl, TR, et al., ed. (2009). "Global Climate Change". Global Climate Change Impacts in the United States. Cambridge University Press. ISBN 978-0-521-14407-0.
127.Jump up ^ KEVIN SCHAEFER, TINGJUN ZHANG, LORI BRUHWILER, ANDREW P. BARRETT (2011). "Amount and timing of permafrost carbon release in response to climate warming". Tellus Series B 63 (2): 165–180. Bibcode:2011TellB..63..165S. doi:10.1111/j.1600-0889.2011.00527.x.
128.Jump up ^ Hansen, James (2000). "Climatic Change: Understanding Global Warming". In Robert Lanza. One World: The Health & Survival of the Human Species in the 21st century. Health Press (New Mexico). pp. 173–190. ISBN 0-929173-33-3. Retrieved 18 August 2007.
129.Jump up ^ Stocker et al., Chapter 7: Physical Climate Processes and Feedbacks, Section 7.2.2: Cloud Processes and Feedbacks, in IPCC TAR WG1 2001.
130.Jump up ^ Torn, Margaret; Harte, John (2006). "Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming". Geophysical Research Letters 33 (10): L10703. Bibcode:2006GeoRL..3310703T. doi:10.1029/2005GL025540. Retrieved 4 March 2007.
131.Jump up ^ Harte, John; et al. (2006). "Shifts in plant dominance control carbon-cycle responses to experimental warming and widespread drought". Environmental Research Letters 1 (1): 014001. Bibcode:2006ERL.....1a4001H. doi:10.1088/1748-9326/1/1/014001. Retrieved 2 May 2007.
132.Jump up ^ Scheffer, Marten; et al. (2006). "Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change". Geophysical Research Letters 33 (10): L10702. Bibcode:2006GeoRL..3310702S. doi:10.1029/2005gl025044. Retrieved 4 May 2007.
133.Jump up ^ Randall et al., Chapter 8, Climate Models and Their Evaluation, Sec. FAQ 8.1 in IPCC AR4 WG1 2007.
134.Jump up ^ IPCC, Technical Summary, p. 54, in IPCC TAR WG1 2001.
135.Jump up ^ Stroeve, J., et al. (2007). "Arctic sea ice decline: Faster than forecast". Geophysical Research Letters 34 (9): L09501. Bibcode:2007GeoRL..3409501S. doi:10.1029/2007GL029703.
136.Jump up ^ Wentz,FJ, et al. (2007). "How Much More Rain Will Global Warming Bring?". Science 317 (5835): 233–5. Bibcode:2007Sci...317..233W. doi:10.1126/science.1140746. PMID 17540863.
137.Jump up ^ Liepert, Beate G.; Previdi (2009). "Do Models and Observations Disagree on the Rainfall Response to Global Warming?". Journal of Climate 22 (11): 3156. Bibcode:2009JCli...22.3156L. doi:10.1175/2008JCLI2472.1. "Recently analyzed satellite-derived global precipitation datasets from 1987 to 2006 indicate an increase in global-mean precipitation of 1.1%–1.4% decade−1. This trend corresponds to a hydrological sensitivity (HS) of 7% K−1 of global warming, which is close to the Clausius–Clapeyron (CC) rate expected from the increase in saturation water vapor pressure with temperature. Analysis of two available global ocean evaporation datasets confirms this observed intensification of the atmospheric water cycle. The observed hydrological sensitivity over the past 20-yr period is higher by a factor of 5 than the average HS of 1.4% K−1 simulated in state-of-the-art coupled atmosphere–ocean climate models for the twentieth and twenty-first centuries."
138.^ Jump up to: a b 4. Global Mean Sea Level Rise Scenarios, in: Main Report, in Parris & others 2012, p. 12
139.Jump up ^ Executive Summary, in Parris & others 2012, p. 1
140.Jump up ^ IPCC, Glossary A-D: "Detection and attribution", in IPCC AR4 WG1 2007. See also Hegerl et al., Section 9.1.2: What are Climate Change Detection and Attribution?, in IPCC AR4 WG1 2007.
141.Jump up ^ Rosenzweig et al., Chapter 1: Assessment of Observed Changes and Responses in Natural and Managed Systems Section 1.2 Methods of detection and attribution of observed changes, in IPCC AR4 WG2 2007 .
142.^ Jump up to: a b IPCC, Synthesis Report Summary for Policymakers, Section 1: Observed changes in climate and their effects, in IPCC AR4 SYR 2007.
143.Jump up ^ Hegerl, G.C., et al. "Ch 9: Understanding and Attributing Climate Change". Executive Summary., in IPCC AR4 WG1 2007
144.Jump up ^ Global mean sea level rise in 2090–2099 relative to 1980–1999
145.^ Jump up to: a b IPCC, "Summary for Policymakers", 3. Projected climate change and its impacts, in IPCC AR4 SYR 2007
146.Jump up ^ PROJECTIONS OF FUTURE SEA LEVEL RISE, pp.243-244, in: Ch. 7. Sea Level Rise and the Coastal Environment, in National Research Council 2010
147.^ Jump up to: a b c BOX SYN-1: SUSTAINED WARMING COULD LEAD TO SEVERE IMPACTS, p.5, in: Synopsis, in National Research Council 2011
148.^ Jump up to: a b IPCC, Synthesis Report Summary for Policymakers, Section 3: Projected climate change and its impacts, in IPCC AR4 SYR 2007.
149.Jump up ^ Meehl, G.A., et al. "Ch 10: Global Climate Projections". Box 10.1: Future Abrupt Climate Change, ‘Climate Surprises’, and Irreversible Changes: Glaciers and ice caps., in IPCC AR4 WG1 2007, p. 776
150.Jump up ^ Meehl, G.A., et al. "Ch 10: Global Climate Projections". Sec 10.3.3.2 Changes in Snow Cover and Frozen Ground., in IPCC AR4 WG1 2007, pp. 770, 772
151.Jump up ^ Meehl, G.A., et al. "Ch 10: Global Climate Projections". Sec 10.3.3.1 Changes in Sea Ice Cover., in IPCC AR4 WG1 2007, p. 770
152.Jump up ^ Wang, M; J.E. Overland (2009). "A sea ice free summer Arctic within 30 years?". Geophys. Res. Lett 36 (7). Bibcode:2009GeoRL..3607502W. doi:10.1029/2009GL037820. Retrieved 2 May 2011.
153.Jump up ^ Met Office. Arctic sea ice 2012. Exeter, UK: Met Office.
154.Jump up ^ NOAA (February 2007). "Will the wet get wetter and the dry drier?". GFDL Climate Modeling Research Highlights (Princeton, New Jersey, USA: National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL)) 1 (5)., p.1. Revision 10/15/2008, 4:47:16 PM.
155.Jump up ^ "D. Future Climate Extremes, Impacts, and Disaster Losses, in: Summary for policymakers"., in IPCC SREX 2012, pp. 9–13
156.Jump up ^ Fischlin, et al., Chapter 4: Ecosystems, their Properties, Goods and Services, Executive Summary, p. 213, in IPCC AR4 WG2 2007. Executive summary not present in on-line text; see pdf.
157.Jump up ^ Schneider et al., Chapter 19: Assessing Key Vulnerabilities and the Risk from Climate Change, Section 19.3.4: Ecosystems and biodiversity, in IPCC AR4 WG2 2007.
158.^ Jump up to: a b c Ocean Acidification, in: Ch. 2. Our Changing Climate, in NCADAC 2013, pp. 69–70
159.^ Jump up to: a b Introduction, in Zeebe 2012, p. 142
160.Jump up ^ Ocean acidification, in: Executive summary, in Good & others 2010, p. 14
161.Jump up ^ UNEP 2010
5. Ocean acidification, in Good & others 2010, pp. 73–81
IAP 2009
162.^ Jump up to: a b c d e f Summary, pp.14-19, in National Research Council 2011
FAQ 12.3, in: Chapter 12: Long-term Climate Change: Projections, Commitments and Irreversibility, in IPCC AR5 WG1 2013, pp.88-89 (pp.90-91 of PDF chapter)
163.Jump up ^ BOX 2.1: STABILIZATION AND NON-CO2 GREENHOUSE GASES (p.65), in: Chapter 2: Emissions, Concentrations, and Related Factors, in National Research Council 2011
164.Jump up ^ Smith, J.B., et al. "Ch. 19. Vulnerability to Climate Change and Reasons for Concern: A Synthesis". Sec 19.6. Extreme and Irreversible Effects., in IPCC TAR WG2 2001
165.Jump up ^ Smith, J. B.; Schneider, S. H.; Oppenheimer, M.; Yohe, G. W.; Hare, W.; Mastrandrea, M. D.; Patwardhan, A.; Burton, I.; Corfee-Morlot, J.; Magadza, C. H. D.; Füssel, H.-M.; Pittock, A. B.; Rahman, A.; Suarez, A.; van Ypersele, J.-P. (17 March 2009). "Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) 'reasons for concern'". Proceedings of the National Academy of Sciences 106 (11): 4133–7. doi:10.1073/pnas.0812355106. PMC 2648893. PMID 19251662. edit
166.^ Jump up to: a b Clark, P.U., et al. (December 2008). "Executive Summary". Abrupt Climate Change. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Reston, Virginia, USA: U.S. Geological Survey., pp. 1–7. Report website
167.Jump up ^ "Siberian permafrost thaw warning sparked by cave data". BBC. 22 February 2013. Retrieved 24 February 2013.
168.Jump up ^ US National Research Council (2010). Advancing the Science of Climate Change: Report in Brief. Washington, D.C., USA: National Academies Press., p.3. PDF of Report
169.^ Jump up to: a b IPCC. "Summary for Policymakers". Sec. 2.6. The Potential for Large-Scale and Possibly Irreversible Impacts Poses Risks that have yet to be Reliably Quantified., in IPCC TAR WG2 2001
170.Jump up ^ Cramer, W., et al., Executive summary, in: Chapter 18: Detection and attribution of observed impacts (archived July 8 2014), pp.3-4, in IPCC AR5 WG2 A 2014
171.Jump up ^ FAQ 7 and 8, in: Volume-wide Frequently Asked Questions (FAQs) (archived July 8 2014), pp.2-3, in IPCC AR5 WG2 A 2014
172.Jump up ^ Oppenheimer, M., et al., Section 19.6.3: Updating Reasons for Concern, in: Chapter 19: Emergent risks and key vulnerabilities (archived July 8 2014), pp.39-46, in IPCC AR5 WG2 A 2014
173.Jump up ^ Field, C., et al., B-3: Regional Risks and Potential for Adaptation, in: Technical Summary (archived July 8 2014), pp.27-30, in IPCC AR5 WG2 A 2014
174.Jump up ^ Oppenheimer, M., et al., Section 19.6.3: Updating Reasons for Concern, in: Chapter 19: Emergent risks and key vulnerabilities (archived July 8 2014), pp.42-43, in IPCC AR5 WG2 A 2014
175.Jump up ^ Porter, J.R., et al., Executive summary, in: Chapter 7: Food security and food production systems (archived July 8 2014), p.3, in IPCC AR5 WG2 A 2014
176.Jump up ^ Reference temperature period converted from late-20th century to pre-industrial times (approximated in the source as 1850-1900). Assessment Box SPM-1 (p.14) and B-2. Sectoral Risks and Potential for Adaptation: Food security and food production systems (p.18), in: Summary for Policymakers (archived July 8 2014), in IPCC AR5 WG2 A 2014
177.Jump up ^ Smith, K.R., et al., FAQ 11.2, in: Chapter 11: Human health: impacts, adaptation, and co-benefits (archived July 8 2014), p.37, in IPCC AR5 WG2 A 2014
178.Jump up ^ Smith, K.R., et al., Section 11.4: Direct Impacts of Climate and Weather on Health, in: Chapter 11: Human health: impacts, adaptation, and co-benefits (archived July 8 2014), pp.10-13, in IPCC AR5 WG2 A 2014
179.Jump up ^ Smith, K.R., et al., Section 11.6.1. Nutrition, in: Chapter 11: Human health: impacts, adaptation, and co-benefits (archived July 8 2014), pp.10-13, in IPCC AR5 WG2 A 2014
180.Jump up ^ Lobell, David; Burke, Tebaldi, Mastrandrea, Falcon, Naylor (2008). "Prioritizing climate change adaptation needs for food security in 2030". Science 319 (5863): 607–10. doi:10.1126/science.1152339. PMID 18239122. Retrieved 13 April 2012.
181.Jump up ^ "Global warming and agriculture". International Monetary Fund. March 2008. Retrieved 5 May 2012.
182.Jump up ^ Battisti, David; Naylor (2009). "Historical warnings of future food insecurity with unprecedented seasonal heat". Science 323 (5911): 240–4. doi:10.1126/science.1164363. PMID 19131626. Retrieved 13 April 2012.
183.Jump up ^ x Schneider et al., Chapter 19: Assessing Key Vulnerabilities and the Risk from Climate Change, Section 19.3.3: Regional vulnerabilities, in IPCC AR4 WG2 2007.
184.Jump up ^ x Schneider et al., Chapter 19: Assessing Key Vulnerabilities and the Risk from Climate Change, Table 19.1, in IPCC AR4 WG2 2007.
185.Jump up ^ Schneider et al., Chapter 19: Assessing Key Vulnerabilities and the Risk from Climate Change, Section 19.3.2.1: Agriculture, in IPCC AR4 WG2 2007.
186.Jump up ^ IPCC AR4 SYR 2007. "3.3.3 Especially affected systems, sectors and regions". Synthesis report.
187.Jump up ^ Mimura, N., et al. (2007). "Executive summary". In Parry, M.L., et al. (eds.). Chapter 16: Small Islands. Climate change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press (CUP): Cambridge, UK: Print version: CUP. This version: IPCC website. ISBN 0521880106. Retrieved 15 September 2011.
188.Jump up ^ "Climate change and the risk of statelessness" (PDF). May 2011. Retrieved 13 April 2012.
189.Jump up ^ Banuri, et al., Chapter 3: Equity and Social Considerations, Section 3.1.2: Concepts of equity, p. 85 et seq. in IPCC SAR WG3 1996.
190.Jump up ^ Banuri, et al., Chapter 3: Equity and Social Considerations, Section ??, p. 83, in IPCC SAR WG3 1996.
191.Jump up ^ PBL Netherlands Environment Agency (15 June 2012). "Figure 6.14, in: Chapter 6: The energy and climate challenge". In van Vuuren, D. and M. Kok. Roads from Rio+20. ISBN 978-90-78645-98-6., p.177, Report no: 500062001. Report website.
192.Jump up ^ Fisher, B.S., et al. "Ch. 3: Issues related to mitigation in the long-term context". 3.5 Interaction between mitigation and adaptation, in the light of climate change impacts and decision-making under long-term uncertainty., in IPCC AR4 WG3 2007
193.Jump up ^ IPCC, Glossary J-P: "Mitigation", in IPCC AR4 WG3 2007.
194.^ Jump up to: a b c d IPCC, Synthesis Report Summary for Policymakers, Section 4: Adaptation and mitigation options, in IPCC AR4 SYR 2007.
195.Jump up ^ IPCC (2007), IPCC AR4 WG1 2007, ed., Summary for Policymakers, ISBN 978-0-521-88009-1
196.Jump up ^ Rom, Joe (12 May 2011). "National Academy calls on nation to 'substantially reduce greenhouse gas emissions' starting ASAP". ThinkProgress. Retrieved 7 February 2012.
197.Jump up ^ IEA (30 May 2011). "Prospect of limiting the global increase in temperature to 2°C is getting bleaker". International Energy Agency. Retrieved 7 February 2012.
198.Jump up ^ Smit et al., Chapter 18: Adaptation to Climate Change in the Context of Sustainable Development and Equity, Section 18.2.3: Adaptation Types and Forms, in IPCC TAR WG2 2001.
199.Jump up ^ "Appendix I. Glossary". "adaptive capacity"., in IPCC AR4 WG2 2007
200.Jump up ^ "Synthesis report". Sec 6.3 Responses to climate change: Robust findings., in IPCC AR4 SYR 2007
201.Jump up ^ "New Report Provides Authoritative Assessment of National, Regional Impacts of Global Climate Change" (PDF) (Press release). U.S. Global Change Research Program. 6 June 2009. Retrieved 27 June 2009.
202.Jump up ^ "Workshop on managing solar radiation". NASA. April 2007. Retrieved 23 May 2009.
203.Jump up ^ "Stop emitting CO2 or geoengineering could be our only hope" (Press release). The Royal Society. 28 August 2009. Retrieved 14 June 2011.
204.Jump up ^ P. Keller, David; Ellias Y. Feng & Andreas Oschlies (January 2014). "Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario". Nature 5: 3304. doi:10.1038/ncomms4304. Retrieved March 31, 2014. "We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change."
205.Jump up ^ Quoted in IPCC SAR SYR 1996, "Synthesis of Scientific-Technical Information Relevant to Interpreting Article 2 of the UN Framework Convention on Climate Change", paragraph 4.1, p. 8 (pdf p. 18.)
206.Jump up ^ Granger Morgan, M. (Lead Author), H. Dowlatabadi, M. Henrion, D. Keith, R. Lempert, S. McBride, M. Small and T. Wilbanks (Contributing Authors) (2009). "Non-Technical Summary: BOX NT.1 Summary of Climate Change Basics". Synthesis and Assessment Product 5.2: Best practice approaches for characterizing, communicating, and incorporating scientific uncertainty in decisionmaking. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Washington, D.C., USA.: National Oceanic and Atmospheric Administration. p. 11. Retrieved 1 June 2011.
207.Jump up ^ UNFCCC (n.d.). "Essential Background". UNFCCC website. Retrieved 18 May 2010.
208.Jump up ^ UNFCCC (n.d.). "Full text of the Convention, Article 2". UNFCCC website. Retrieved 18 May 2010.
209.Jump up ^ Rogner et al., Chapter 1: Introduction, Executive summary, in IPCC AR4 WG3 2007.
210.Jump up ^ Raupach, R.; Marland, G.; Ciais, P.; Le Quere, C.; Canadell, G.; Klepper, G.; Field, B. (Jun 2007). "Global and regional drivers of accelerating CO2 emissions" (Free full text). Proceedings of the National Academy of Sciences 104 (24): 10288–10293. Bibcode:2007PNAS..10410288R. doi:10.1073/pnas.0700609104. ISSN 0027-8424. PMC 1876160. PMID 17519334. edit
211.^ Jump up to: a b Dessai, S. (2001). "The climate regime from The Hague to Marrakech: Saving or sinking the Kyoto Protocol?" (PDF). Tyndall Centre Working Paper 12. Tyndall Centre website. Retrieved 5 May 2010.
212.Jump up ^ Grubb, M. (July–September 2003). "The Economics of the Kyoto Protocol" (PDF). World Economics 4 (3): 144–145. Retrieved 25 March 2010.
213.^ Jump up to: a b UNFCCC (n.d.). "Kyoto Protocol". UNFCCC website. Retrieved 21 May 2011.
214.Jump up ^ Müller, Benito (February 2010). Copenhagen 2009: Failure or final wake-up call for our leaders? EV 49 (PDF). Oxford Institute for Energy Studies. p. i. ISBN 978-1-907555-04-6. Retrieved 18 May 2010.
215.^ Jump up to: a b United Nations Environment Programme (November 2010). "Technical summary" (PDF). The Emissions Gap Report: Are the Copenhagen Accord pledges sufficient to limit global warming to 2 °C or 1.5 °C? A preliminary assessment (advance copy). UNEP website. Retrieved 11 May 2011. This publication is also available in e-book format
216.Jump up ^ UNFCCC (30 March 2010). "Decision 2/CP. 15 Copenhagen Accord. In: Report of the Conference of the Parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009. Addendum. Part Two: Action taken by the Conference of the Parties at its fifteenth session" (PDF). United Nations Office at Geneva, Switzerland. p. 5. Retrieved 17 May 2010.
217.Jump up ^ "Outcome of the work of the Ad Hoc Working Group on long-term Cooperative Action under the Convention". PRESIDENCIA DE LA REPÚBLICA, MÉXICO. 11 December 2010. p. 2. Retrieved 12 January 2011.
218.^ Jump up to: a b Royal Society (13 April 2005). "Letter from The Royal Society: A GUIDE TO FACTS AND FICTIONS ABOUT CLIMATE CHANGE: Misleading arguments: Many scientists do not think that climate change is a problem. Some scientists have signed petitions stating that climate change is not a problem.". Economic Affairs – Written Evidence. The Economics of Climate Change, the Second Report of the 2005–2006 session, produced by the UK Parliament House of Lords Economics Affairs Select Committee. UK Parliament website. Retrieved 9 July 2011. This document is also available in PDF format
219.Jump up ^ John Cook, Dana Nuccitelli, Sarah A Green, Mark Richardson, Bärbel Winkler, Rob Painting, Robert Way, Peter Jacobs. Andrew Skuce (15 May 2013). "Quantifying the consensus on anthropogenic global warming in the scientific literature". Environmental Research Letters 8 (2): 024024. Bibcode:2013ERL.....8b4024C. doi:10.1088/1748-9326/8/2/024024.
220.Jump up ^ Wihby, John (4 November 2011). "Structure of Scientific Opinion on Climate Change". Journalist's Resource (Harvard Kennedy School).
221.Jump up ^ Stephen J. Farnsworth, S. Robert Lichter (October 27, 2011). "The Structure of Scientific Opinion on Climate Change". International Journal of Public Opinion Research. Retrieved December 2, 2011.
222.Jump up ^ Academia Brasileira de Ciéncias (Brazil), Royal Society of Canada, Chinese Academy of Sciences, Académie des Sciences (France), Deutsche Akademie der Naturforscher Leopoldina (Germany), Indian National Science Academy, Accademia Nazionale dei Lincei (Italy), Science Council of Japan, Academia Mexicana de Ciencias, Russian Academy of Sciences, Academy of Science of South Africa, Royal Society (United Kingdom), National Academy of Sciences (United States of America) (May 2009). "G8+5 Academies’ joint statement: Climate change and the transformation of energy technologies for a low carbon future". US National Academies website. Retrieved 5 May 2010.
223.Jump up ^ Julie Brigham-Grette et al. (September 2006). "Petroleum Geologists' Award to Novelist Crichton Is Inappropriate" (PDF). Eos 87 (36). Retrieved 23 January 2007. "The AAPG stands alone among scientific societies in its denial of human-induced effects on global warming."
224.Jump up ^ DiMento, Joseph F. C.; Doughman, Pamela M. (2007). Climate Change: What It Means for Us, Our Children, and Our Grandchildren. The MIT Press. p. 68. ISBN 978-0-262-54193-0.
225.Jump up ^ Boykoff, M.; Boykoff, J. (July 2004). "Balance as bias: global warming and the US prestige press1" (Full free text). Global Environmental Change Part A 14 (2): 125–136. doi:10.1016/j.gloenvcha.2003.10.001. edit
226.Jump up ^ Oreskes, Naomi; Conway, Erik. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming (first ed.). Bloomsbury Press. ISBN 978-1-59691-610-4.
227.Jump up ^ Aaron M. McCright and Riley E. Dunlap, "Challenging Global Warming as a Social Problem: An Analysis of the Conservative Movement's Counter-Claims", Social Problems, November 2000, Vol. 47 Issue 4, pp 499–522 in JSTOR
228.Jump up ^ Weart, S. (July 2009). "The Public and Climate Change (cont. – since 1980). Section: After 1988". American Institute of Physics website. Retrieved 5 May 2010. SEPP (n.d.). "Frequently Asked Questions About Climate Change". Science & Environmental Policy Project (SEPP) website. Archived from the original on 11 May 2008. Retrieved 5 May 2010.
229.Jump up ^ Begley, Sharon (13 August 2007). "The Truth About Denial". Newsweek. Retrieved 13 August 2007.
230.Jump up ^ Adams, David (20 September 2006). "Royal Society tells Exxon: stop funding climate change denial". The Guardian. London. Retrieved 9 August 2007.
231.Jump up ^ "Exxon cuts ties to global warming skeptics". MSNBC. 12 January 2007. Retrieved 2 May 2007.
232.Jump up ^ Sandell, Clayton (3 January 2007). "Report: Big Money Confusing Public on Global Warming". ABC. Retrieved 27 April 2007.
233.Jump up ^ "Greenpeace: Exxon still funding climate skeptics". USA Today. Reuters. 18 May 2007. Retrieved 21 January 2010.
234.Jump up ^ "Global Warming Resolutions at U.S. Oil Companies Bring Policy Commitments from Leaders, and Record High Votes at Laggards" (Press release). Ceres. 13 May 2004. Retrieved 4 March 2010.
235.Jump up ^ "It's All in a Name: 'Global Warming' Vs. 'Climate Change'".
236.Jump up ^ Pelham, Brett (22 April 2009). "Awareness, Opinions About Global Warming Vary Worldwide". Gallup. Retrieved 14 July 2009.
237.Jump up ^ "Summary of Findings". Little Consensus on Global Warming. Partisanship Drives Opinion. Pew Research Center. 12 July 2006. Retrieved 14 April 2007.
238.Jump up ^ Crampton, Thomas (4 January 2007). "More in Europe worry about climate than in U.S., poll shows". The New York Times. Retrieved 9 June 2010.
239.Jump up ^ "Public attitudes towards climate change and the impact on transport (January 2011 report)". Department for Transport. 2011. p. 8. Retrieved 3 February 2011.
240.Jump up ^ Damian Carrington (31 January 2011). "Public belief in climate change weathers storm, poll shows | Environment | guardian.co.uk". The Guardian. UK. Retrieved 4 February 2011.
241.Jump up ^ Pugliese, Anita (20 April 2011). "Fewer Americans, Europeans View Global Warming as a Threat". Gallup. Retrieved 22 April 2011.
242.Jump up ^ Ray, Julie; Anita Pugliese (22 April 2011). "Worldwide, Blame for Climate Change Falls on Humans". Gallup.Com. Retrieved 3 May 2011. "People nearly everywhere, including majorities in developed Asia and Latin America, are more likely to attribute global warming to human activities rather than natural causes. The U.S. is the exception, with nearly half (47%) – and the largest percentage in the world – attributing global warming to natural causes."
243.Jump up ^ "Climate Change and Financial Instability Seen as Top Global Threats". Pew Research Center for the People & the Press.
244.Jump up ^ Climate Change: Key Data Points from Pew Research | Pew Research Center
245.^ Jump up to: a b Erik Conway. "What's in a Name? Global Warming vs. Climate Change", NASA, 5 December 2008
246.Jump up ^ U.S. Senate, Committee on Energy and Natural Resources, "Greenhouse Effect and Global Climate Change, part 2" 100th Cong., 1st sess., 23 June 1988, p. 44.
References
Good, P., et al. (2010), An updated review of developments in climate science research since IPCC AR4. A report by the AVOID consortium, London, UK: Committee on Climate Change, p. 14. Report website.
IAP (June 2009), Interacademy Panel (IAP) Member Academies Statement on Ocean Acidification, Secretariat: TWAS (the Academy of Sciences for the Developing World), Trieste, Italy.
IEA (2009). World Energy Outlook 2009. Paris, France: International Energy Agency (IEA). ISBN 978-92-64-06130-9.
IPCC AR5 WG2 A (2014), Field, C.B., et al., ed., Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (GSA). Contribution of Working Group II (WG2) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press. Archived 25 June 2014.
IPCC AR5 WG1 (2013), Stocker, T.F., et al., ed., Climate Change 2013: The Physical Science Basis. Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), Cambridge University Press. Climate Change 2013 Working Group 1 website.
IPCC SREX (2012). Field, C.B., et al., ed. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). Cambridge University Press.. Summary for Policymakers available in Arabic, Chinese, French, Russian, and Spanish.
IPCC AR4 SYR (2007). Core Writing Team; Pachauri, R.K; and Reisinger, A., ed. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. ISBN 92-9169-122-4.
IPCC AR4 WG1 (2007). Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; and Miller, H.L., ed. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 978-0-521-88009-1. (pb: 978-0-521-70596-7)
IPCC AR4 WG2 (2007). Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; and Hanson, C.E., ed. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 978-0-521-88010-7. (pb: 978-0-521-70597-4)
IPCC AR4 WG3 (2007). Metz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; and Meyer, L.A., ed. Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 978-0-521-88011-4. (pb: 978-0-521-70598-1)
IPCC TAR WG1 (2001). Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; and Johnson, C.A., ed. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 0-521-80767-0. (pb: 0-521-01495-6)
IPCC TAR WG2 (2001). McCarthy, J. J.; Canziani, O. F.; Leary, N. A.; Dokken, D. J.; and White, K. S., ed. Climate Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 0-521-80768-9. (pb: 0-521-01500-6)
IPCC TAR WG3 (2001). Metz, B.; Davidson, O.; Swart, R.; and Pan, J., ed. Climate Change 2001: Mitigation. Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 0-521-80769-7. (pb: 0-521-01502-2)
IPCC TAR SYR (2001). Watson, R. T.; and the Core Writing Team, ed. Climate Change 2001: Synthesis Report. Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 0-521-80770-0. (pb: 0-521-01507-3)
IPCC SAR SYR (1996). Climate Change 1995: A report of the Intergovernmental Panel on Climate Change. Second Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. pdf. The "Full Report", consisting of "The IPCC Second Assessment Synthesis of Scientific-Technical Information Relevant to Interpreting Article 2 of the UN Framework Convention on Climate Change" and the Summaries for Policymakers of the three Working Groups.
IPCC SAR WG3 (1996). Bruce, J.P.; Lee, H.; and Haites, E.F., ed. Climate Change 1995: Economic and Social Dimensions of Climate Change. Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 0-521-56051-9. (pb: 0-521-56854-4) pdf.
Jamet, S. and J. Corfee-Morlot (7 April 2009), "Assessing the Impacts of Climate Change: A Literature Review", OECD Economics Department Working Papers (OECD) (691), doi:10.1787/224864018517. Paper at IDEAS.
 This article incorporates public domain material from the US Global Change Research Program (USGCRP) document: NCADAC (11 January 2013), Federal Advisory Committee Draft Climate Assessment. A report by the National Climate Assessment Development Advisory Committee (NCADAC), Washington, D.C., USA: U.S. Global Change Research Program
National Research Council (2011), Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia, Washington, D.C., USA: National Academies Press
National Research Council (2010). America's Climate Choices: Panel on Advancing the Science of Climate Change;. Washington, D.C.: The National Academies Press. ISBN 0-309-14588-0.
Parris, A., et al. (6 December 2012), Global Sea Level Rise Scenarios for the US National Climate Assessment. NOAA Tech Memo OAR CPO-1, NOAA Climate Program Office. Report website.
UNEP (2010), UNEP Emerging Issues: Environmental Consequences of Ocean Acidification: A Threat to Food Security, Nairobi, Kenya: United Nations Environment Programme (UNEP). Report summary.
 This article incorporates public domain material from the US Global Change Research Program (USGCRP) document: USGCRP (2009). Karl, T.R.; Melillo. J.; Peterson, T.; Hassol, S.J., ed. Global Climate Change Impacts in the United States. Cambridge University Press. ISBN 978-0-521-14407-0.. Public-domain status of this report can be found on p.4 of PDF
US NRC (2008). Understanding and responding to climate change: Highlights of National Academies Reports, 2008 edition, produced by the US National Research Council (US NRC). Washington, D.C., USA: National Academy of Sciences.
US NRC (2012). Climate Change: Evidence, Impacts, and Choices. US National Research Council (US NRC).. Also available as PDF
Zeebe, R.E. (May 2012), "History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification", Annual Review of Earth and Planetary Sciences 40, doi:10.1146/annurev-earth-042711-105521. First published online as a Review in Advance on 3 January 2012.
Further reading
Association of British Insurers (June 2005). Financial Risks of Climate Change (PDF).
Ammann, Caspar; et al. (2007). "Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate Simulation Model" (PDF). Proceedings of the National Academy of Sciences of the United States of America 104 (10): 3713–3718. Bibcode:2007PNAS..104.3713A. doi:10.1073/pnas.0605064103. PMC 1810336. PMID 17360418. "Simulations with only natural forcing components included yield an early 20th century peak warming of ≈0.2 °C (≈1950 AD), which is reduced to about half by the end of the century because of increased volcanism"
Barnett, TP; Adam, JC; Lettenmaier, DP; Adam, J. C.; Lettenmaier, D. P. (17 November 2005). "Potential impacts of a warming climate on water availability in snow-dominated regions" (abstract). Nature 438 (7066): 303–309. Bibcode:2005Natur.438..303B. doi:10.1038/nature04141. PMID 16292301.
Behrenfeld, MJ; O'malley, RT; Siegel, DA et al. (7 December 2006). "Climate-driven trends in contemporary ocean productivity" (PDF). Nature 444 (7120): 752–755. Bibcode:2006Natur.444..752B. doi:10.1038/nature05317. PMID 17151666.
Choi, Onelack; Fisher, Ann (May 2005). "The Impacts of Socioeconomic Development and Climate Change on Severe Weather Catastrophe Losses: Mid-Atlantic Region (MAR) and the U.S". Climate Change 58 (1–2): 149–170. doi:10.1023/A:1023459216609.
Dyurgerov, Mark B.; Meier, Mark F. (2005). Glaciers and the Changing Earth System: a 2004 Snapshot (PDF). Institute of Arctic and Alpine Research Occasional Paper #58. ISSN 0069-6145.
Emanuel, KA (4 August 2005). "Increasing destructiveness of tropical cyclones over the past 30 years" (PDF). Nature 436 (7051): 686–688. Bibcode:2005Natur.436..686E. doi:10.1038/nature03906. PMID 16056221.
Hansen, James; et al. (3 June 2005). "Earth's Energy Imbalance: Confirmation and Implications" (PDF). Science 308 (5727): 1431–1435. Bibcode:2005Sci...308.1431H. doi:10.1126/science.1110252. PMID 15860591.
Hinrichs, Kai-Uwe; Hmelo, Laura R.; Sylva, Sean P. (21 February 2003). "Molecular Fossil Record of Elevated Methane Levels in Late Pleistocene Coastal Waters". Science 299 (5610): 1214–1217. Bibcode:2003Sci...299.1214H. doi:10.1126/science.1079601. PMID 12595688.
Hirsch, Tim (11 January 2006). "Plants revealed as methane source". BBC.
Hoyt, Douglas V.; Schatten, Kenneth H. (November 1993). "A discussion of plausible solar irradiance variations, 1700–1992". Journal of Geophysical Research 98 (A11): 18,895–18,906. Bibcode:1993JGR....9818895H. doi:10.1029/93JA01944.
Karnaukhov, A. V. (2001). "Role of the Biosphere in the Formation of the Earth's Climate: The Greenhouse Catastrophe" (PDF). Biophysics 46 (6).
Kenneth, James P.; et al. (14 February 2003). Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. American Geophysical Union.
Keppler, Frank; et al. (18 January 2006). "Global Warming – The Blame Is not with the Plants". Max Planck Society.
Lean, Judith L.; Wang, Y.M.; Sheeley, N.R. (December 2002). "The effect of increasing solar activity on the Sun's total and open magnetic flux during multiple cycles: Implications for solar forcing of climate". Geophysical Research Letters 29 (24): 2224. Bibcode:2002GeoRL..29x..77L. doi:10.1029/2002GL015880.
Lerner, K. Lee; Lerner, K. Lee; Wilmoth, Brenda (26 July 2006). Environmental issues: essential primary sources. Thomson Gale. ISBN 1-4144-0625-8.
McKibben, Bill (2011). The Global Warming Reader. OR Books. ISBN 978-1-935928-36-2.
Muscheler, R; Joos, F; Müller, SA; Snowball, I (28 July 2005). "Climate: How unusual is today's solar activity?" (PDF). Nature 436 (7012): 1084–1087. Bibcode:2005Natur.436E...3M. doi:10.1038/nature04045. PMID 16049429.
Oerlemans, J. (29 April 2005). "Extracting a Climate Signal from 169 Glacier Records" (PDF). Science 308 (5722): 675–677. Bibcode:2005Sci...308..675O. doi:10.1126/science.1107046. PMID 15746388.
Purse, BV; Mellor, PS; Rogers, DJ; Samuel, AR; Mertens, PP; Baylis, M (February 2005). "Climate change and the recent emergence of bluetongue in Europe" (abstract). Nature Reviews Microbiology 3 (2): 171–181. doi:10.1038/nrmicro1090. PMID 15685226.
Revkin, Andrew C (5 November 2005). "Rise in Gases Unmatched by a History in Ancient Ice". The New York Times.
Royal Society (2005). "Joint science academies' statement: Global response to climate change". Retrieved 19 April 2009.
Roulstone, Ian and Norbury, John (2013). Invisible in the Storm: the role of mathematics in understanding weather. Princeton University Press. (see Chapter 8)
Ruddiman, William F. (15 December 2005). Earth's Climate Past and Future. New York: Princeton University Press. ISBN 0-7167-3741-8.
Ruddiman, William F. (1 August 2005). Plows, Plagues, and Petroleum: How Humans Took Control of Climate. New Jersey: Princeton University Press. ISBN 0-691-12164-8.
Schelling, Thomas C. (2002). "Greenhouse Effect". In David R. Henderson (ed.). Concise Encyclopedia of Economics (1st ed.). Library of Economics and Liberty. OCLC 317650570, 50016270 and 163149563
Solanki, SK; Usoskin, IG; Kromer, B; Schüssler, M; Beer, J; et al. (23 October 2004). "Unusual activity of the Sun during recent decades compared to the previous 11,000 years" (PDF). Nature 431 (7012): 1084–1087. Bibcode:2004Natur.431.1084S. doi:10.1038/nature02995. PMID 15510145.
Solanki, Sami K.; et al. (28 July 2005). "Climate: How unusual is today's solar activity? (Reply)" (PDF). Nature 436 (7050): E4–E5. Bibcode:2005Natur.436E...4S. doi:10.1038/nature04046.
Sowers, Todd (10 February 2006). "Late Quaternary Atmospheric CH4 Isotope Record Suggests Marine Clathrates Are Stable". Science 311 (5762): 838–840. Bibcode:2006Sci...311..838S. doi:10.1126/science.1121235. PMID 16469923.
Svensmark, Henrik; et al. (8 February 2007). "Experimental evidence for the role of ions in particle nucleation under atmospheric conditions". Proceedings of the Royal Society A (FirstCite Early Online Publishing) 463 (2078): 385–396. Bibcode:2007RSPSA.463..385S. doi:10.1098/rspa.2006.1773. (online version requires registration)
Walter, KM; Zimov, SA; Chanton, JP; Verbyla, D; Chapin Fs, 3rd; et al. (7 September 2006). "Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming". Nature 443 (7107): 71–75. Bibcode:2006Natur.443...71W. doi:10.1038/nature05040. PMID 16957728.
Wang, Y.-M.; Lean, J.L.; Sheeley, N.R. (20 May 2005). "Modeling the sun's magnetic field and irradiance since 1713" (PDF). Astrophysical Journal 625 (1): 522–538. Bibcode:2005ApJ...625..522W. doi:10.1086/429689.
External links
Find more about Global warming at Wikipedia's sister projects
Search Wiktionary Definitions and translations from Wiktionary
Search Commons Media from Commons
Search Wikinews News stories from Wikinews
Search Wikiquote Quotations from Wikiquote
Search Wikisource Source texts from Wikisource
Search Wikibooks Textbooks from Wikibooks
Search Wikiversity Learning resources from Wikiversity
ResearchNASA Goddard Institute for Space Studies – Global change research
NOAA State of the Climate Report – U.S. and global monthly state of the climate reports
Climate Change at the National Academies – repository for reports
Nature Reports Climate Change – free-access web resource
Met Office: Climate change ;– UK National Weather Service
Educational Global Climate Modelling (EdGCM) – research-quality climate change simulator
Program for Climate Model Diagnosis and Intercomparison Develops and releases standardized models such as CMIP3 (AR4) and CMIP5 (AR5)
EducationalWhat Is Global Warming? – by National Geographic
Global Climate Change Indicators – from NOAA
NOAA Climate Services – from NOAA
Skeptical Science: Getting skeptical about global warming skepticism
Global Warming Art, a collection of figures and images
Global Warming Frequently Asked Questions – from NOAA
Understanding Climate Change – Frequently Asked Questions – from UCAR
Global Warming: Center for Global Studies at the University of Illinois
Global Climate Change: NASA's Eyes on the Earth – from NASA's JPL and Caltech
OurWorld 2.0 – from the United Nations University
Center for Climate and Energy Solutions – business and politics
Climate change - EAA-PHEV Wiki Electric vehicles fueled with electricity from wind or solar power will reduce greenhouse gas pollution from the transportation sector.
Climate Change Indicators in the United States Report by United States Environmental Protection Agency, 80 pp.
The World Bank - Climate Change - A 4 Degree Warmer World - We must and can avoid it
A world with this much CO²: lessons from 4 million years ago
Global Sea Level Rise Map
 Learning materials related to this article (Quiz) at Wikiversity


[show] 
Nuvola apps kpdf2.png Topics related to Global warming














































































































































































































































































































































































































































































Planetary boundaries














































































alt =
Category






            
 


Categories: Global warming
Climate change
Climate history
Economic problems
Globalization issues









Navigation menu



Create account
Log in



Article

Talk









Read

View source

View history

















Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikimedia Shop

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Print/export
Create a book
Download as PDF
Printable version

Languages
Afrikaans
Alemannisch
አማርኛ
Ænglisc
العربية
Aragonés
Azərbaycanca
বাংলা
Bân-lâm-gú
Башҡортса
Беларуская
Беларуская (тарашкевіца)‎
Български
Bosanski
Brezhoneg
Буряад
Català
Cebuano
Čeština
Cymraeg
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Fiji Hindi
Français
Furlan
Gaeilge
Gàidhlig
Galego
ગુજરાતી
한국어
Հայերեն
हिन्दी
Hrvatski
Ido
Ilokano
Bahasa Indonesia
Interlingua
Íslenska
Italiano
עברית
Basa Jawa
ಕನ್ನಡ
Kapampangan
ქართული
Қазақша
Kiswahili
Kreyòl ayisyen
Лезги
Latina
Latviešu
Lietuvių
Magyar
Македонски
മലയാളം
मराठी
مصرى
Bahasa Melayu
Монгол
မြန်မာဘာသာ
Nederlands
नेपाली
नेपाल भाषा
日本語
Nordfriisk
Norsk bokmål
Norsk nynorsk
Occitan
Oromoo
ਪੰਜਾਬੀ
پنجابی
Polski
Português
Română
Rumantsch
Русиньскый
Русский
Саха тыла
Shqip
Sicilianu
සිංහල
Simple English
Slovenčina
Slovenščina
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Basa Sunda
Suomi
Svenska
Tagalog
தமிழ்
Татарча/tatarça
తెలుగు
ไทย
Тоҷикӣ
Türkçe
Українська
اردو
Tiếng Việt
Võro
文言
Winaray
吴语
ייִדיש
粵語
Zazaki
Žemaitėška
中文
Edit links
This page was last modified on 22 August 2014 at 00:19.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Privacy policy
About Wikipedia
Disclaimers
Contact Wikipedia
Developers
Mobile view
Wikimedia Foundation
Powered by MediaWiki
   
http://en.wikipedia.org/wiki/Global_warming







No comments:

Post a Comment